Sustainability in Real Estate: CBRE’s Strategy for a Lower-Carbon Future

With roots tracing back to 1906, CBRE is a global real estate services firm specializing in property sales, leasing, financing, facilities and property management, valuations, investment management, and development across various industries. With a strong presence in Detroit and Southeast Michigan, the company plays a key role in shaping the region’s commercial real estate landscape. SBN Detroit interviewed Tommy Bledsoe, Senior Sustainability Specialist at CBRE, about the company’s sustainability strategy, the hurdles in decarbonizing real estate, and the trends shaping the future of sustainable property management. Q: How does CBRE approach sustainability? A: CBRE’s goal is to create long-term value for the company and its clients by accelerating sustainability initiatives. This commitment extends across CBRE’s operations as well as the properties it manages and develops. The company has set a net-zero greenhouse gas emissions target by 2040, covering corporate operations, real estate management and development, and supply chain activities. Since most of these emissions come from properties managed on behalf of clients, CBRE’s success depends on strong collaboration. To meet this challenge, CBRE has built end-to-end sustainability capabilities that help the company and its clients transition toward a lower-carbon future. Since 2019, we’ve reduced absolute emissions by 18 percent across Scopes 1, 2, and 3. Q: CBRE has set ambitious sustainability targets, but what are the biggest challenges in reducing emissions across managed properties and assets? A: One of the biggest challenges is the need for partnerships with property owners. While CBRE plays a key role in managing properties, major sustainability investments and operational changes require approval from the building owners themselves. To address this, CBRE takes a consultative approach, helping guide decision-making with data-driven recommendations that align financial benefits with sustainability outcomes. By demonstrating how sustainability investments enhance asset value and operational efficiency, the company works to gain buy-in from property owners and support long-term emissions reductions. Q: With nearly 97 percent of CBRE’s total emissions coming from property management and development, what strategies are in place to address and decarbonize these areas? A: Since 2019, CBRE has reduced emissions across property and facility management by focusing on four core areas: Maximizing resource efficiency through energy efficiency projects Expanding the adoption of renewable energy Reducing reliance on fossil fuels through electrification Decarbonizing the supply chain by working closely with vendors CBRE has also strengthened its sustainability capabilities through strategic partnerships. The company has a global collaboration with Deepki, a leader in ESG data management, and has expanded its renewable energy expertise by acquiring NRG’s renewable business. Additionally, CBRE is investing in learning and development programs to ensure employees – especially those outside of sustainability roles – have the knowledge needed to effectively advise clients. Q: Many companies struggle to balance sustainability goals with financial concerns. How does CBRE demonstrate the business case for sustainability to property owners and investors? A: We discuss the financial benefits of sustainability with our clients frequently, and the data consistently shows that sustainability investments are good for business. Buildings that incorporate sustainability measures tend to generate higher operating income, with many commanding an increase in rental premiums of up to four percent in the office sector. Additionally, these properties operate more efficiently, leading to lower utility and maintenance costs. Market demand is also increasing. A CBRE survey of office occupiers found that 66 percent of tenants prioritize sustainable building features, making it the most commonly cited amenity preference. Properties with strong sustainability credentials also tend to resell at higher values, making sustainability a key differentiator in long-term asset performance. CBRE works closely with clients to provide data-driven insights and present projects that align both financial and environmental benefits. Q: What industries or property types present the biggest challenges for sustainability initiatives, and how does CBRE tailor solutions to different clients? A: The biggest challenge isn’t necessarily the type of property, but rather the lease structure. Industrial and retail properties, for example, often operate under triple-net leases, where tenants – not property owners – are responsible for utility costs. This creates a scenario where landlords may hesitate to invest in sustainability upgrades if tenants receive most of the financial benefits. As a property manager, CBRE sits at the nexus between owners and tenants, putting the company in a unique position to bridge this gap. We work to align interests by educating tenants on green initiatives, offering sustainability services that collect and analyze utility data, and identifying mutually beneficial sustainability projects. By facilitating collaboration, CBRE helps landlords and tenants find common ground on sustainability investments. Q: Speaking of collaboration, how does CBRE work with suppliers, contractors, and municipalities to ensure sustainable building practices? A: CBRE’s sustainability efforts extend beyond property owners and occupiers to include suppliers, contractors, and industry organizations. The company is an active member of industry groups such as the U.S. Green Building Council and the Building Owners and Managers Association. Additionally, CBRE enforces a supplier code of conduct that ensures vendors align with socially and environmentally responsible commitments. Q: Many older buildings were not designed with energy efficiency in mind. What strategies does CBRE use to retrofit and modernize legacy properties? A: Retrofitting existing buildings is a major focus, particularly since an estimated 80 percent of today’s buildings will still be in use by 2050. Achieving a sustainable built environment requires upgrading these properties rather than relying on new construction alone. We begin by assessing a building’s baseline performance, using software tools to analyze energy consumption and model potential retrofit pathways. Engineers conduct on-site evaluations to identify efficiency opportunities, and findings are compiled into asset-specific sustainability action plans. Q CBRE operates globally. How do sustainability priorities and challenges differ across regions, specifically Southeast Michigan? A: We see a lot of regional differences and nuances. Regulations vary by region, and in Southeast Michigan, local policies play a key role in driving sustainability efforts. Both Detroit and Ann Arbor have energy and water benchmarking policies, requiring properties of a certain size to report consumption data. While benchmarking is common nationwide, some cities and states
Sustainability in Civil Engineering: Challenges, Innovations, and the Future

Spalding DeDecker is a Rochester, Hills-Michigan-based civil engineering and surveying firm specializing in infrastructure and land development, land surveying, landscape architecture, and urban planning. With decades of experience, the company has contributed to a wide range of projects, including transportation networks, private and public developments, and municipal services, balancing engineering excellence with evolving industry demands. SBN Detroit interviewed Tricia DeMarco, Director of Urban Design and Sustainability, and Bob Ford, Lead Landscape Architecture at Spalding DeDecker, to discuss the role of sustainability within their projects, as well as the challenges and opportunities of implementing eco-conscious infrastructure and design in Southeast Michigan. Q: How does Spalding DeDecker approach sustainability, and what methodologies or processes are you focused on? DeMarco: Spalding DeDecker has been around for 70 years, and like any forward-thinking company, we continually seek opportunities to evolve. Over the past five years, we’ve expanded our services to include urban planning and landscape architecture. This multidisciplinary approach is now essential for competing in sustainable projects. By integrating these disciplines, we ensure sustainability is considered holistically at every stage of development, rather than as an afterthought. Q: What are the biggest sustainability challenges the civil engineering and landscape architecture industries face today, particularly in infrastructure development and land surveying? DeMarco: Public funding and prioritization remain some of the biggest hurdles. Market conditions and regulatory approvals also pose significant barriers to innovation and development. Some of the most promising, forward-thinking projects stall or never come to fruition due to these constraints. Ford: In urban environments, implementing sustainability measures—such as water detention systems—offers clear environmental benefits. These solutions cleanse stormwater before it enters drainage systems, mitigate flooding, and improve water quality. However, they also require land and space which can be costly. Emerging technologies are helping to submerge these systems beneath parking lots and other developed areas, but they add significant costs that not all projects can absorb. Q: What are the specific sustainability challenges in Southeast Michigan? DeMarco: Having worked in multiple states, I’ve seen that one of Southeast Michigan’s biggest challenges is stormwater retention. Many areas, particularly in Detroit, have non-infiltrating soils, which means that even when regulations require on-site stormwater retention, the land itself can’t accommodate it. Contaminated urban soils further complicate stormwater solutions. Ford: That’s exactly right. Many of the soils in this region are heavy clay, which doesn’t allow for effective water infiltration. Additionally, in urban areas, we often encounter layers of fill material left from demolished buildings, which can create further challenges. If a site wasn’t properly backfilled or if remnants of previous structures remain, it adds complexity and cost to development. Q: Conversely, are there any specific opportunities in urban planning, infrastructure, and site design in Southeast Michigan? DeMarco: One of the greatest opportunities in Detroit and Southeast Michigan is the availability of land. While vacant land presents its own challenges, it also allows us to think creatively and implement solutions that wouldn’t be possible in more densely developed cities. Another opportunity lies in rethinking roadways. Rather than automatically widening roads, we can evaluate the entire right-of-way and explore alternative uses. Community engagement is also a significant advantage here—many projects are directly shaped by input from local residents and stakeholders, which isn’t always the case in other regions. Ford: In downtown Detroit, there has been a great deal of innovation surrounding stormwater runoff management, including drainage credit incentives for sustainable stormwater solutions. These regulatory challenges have actually fueled creative approaches and encouraged developers and engineers to think differently. Q: How does Spalding DeDecker integrate sustainable practices into projects like the Detroit Zoo? Can you share specific strategies or innovations that have made a measurable impact? DeMarco: The Detroit Zoo project provided an opportunity to approach sustainability from a much broader perspective than is typical in most projects. One of the key focuses was stormwater management. Instead of viewing stormwater as a nuisance, we considered it a valuable resource. Through the Zoo’s Discovery Trail project, we designed a system that captures and can be used in the future to repurpose stormwater for practical uses such as flushing toilets and irrigation. By treating stormwater as an asset rather than a problem, we were able to create a more sustainable and efficient solution. Pursuing SITEs Certification on this project also encouraged us to think creatively about preserving existing soil composition and protection of the underlying mycelium networks which, as an industry, we are gaining an increasing understanding of the importance of leaving these site elements undisturbed. Q: When it comes to private and public development projects, how do you balance environmental responsibility with economic feasibility? DeMarco: Environmental responsibility and economic feasibility go hand in hand. At its core, sustainability is about managing the tension between the two. One of the most cost-effective approaches is leveraging the existing natural systems of a site rather than working against them. Respecting and integrating these systems can lead to both economic and environmental benefits. Ford: There’s always a balance to strike. Incorporating sustainability measures often requires an upfront investment, but there are ways to offset costs. Recycling materials—such as using crushed concrete as base material—can reduce expenses while maintaining structural integrity. We also prioritize stormwater infiltration where possible, using green infrastructure to not only manage water but also enhance aesthetics. Trees and green spaces don’t just help with stormwater; they reduce the heat island effect, improve air quality, and enhance the pedestrian experience. Q: What are the biggest barriers to incorporating sustainable practices into large-scale projects? DeMarco: The biggest barrier is the status quo. It’s far easier to do things the way they’ve always been done. True sustainability requires stepping back, understanding the unique context of a project, and identifying site-specific opportunities. Ford: Absolutely. Regulations often dictate project design based on traditional methodologies, limiting the ability to explore more sustainable alternatives. That’s why it’s crucial to involve clients and regulatory agencies early in the planning process to explore new approaches before a project becomes locked into a conventional path. Q: How is climate change
Safe Water Engineering – Tackling Water Safety in Southeast Michigan

Southeast Michigan faces significant challenges in water infrastructure and safety, particularly in addressing aging systems, lead contamination, and ensuring equitable access to clean drinking water. Safe Water Engineering LLC, a Detroit-based consulting firm founded by Elin Warn Betanzo, focuses on improving access to safe drinking water through engineering and policy solutions. As the architect behind Detroit’s lead service line replacement program, Betanzo has played a key role in improving water safety in the region. The city has replaced over 11,000 lead service lines since 2018, providing safer drinking water to thousands of residents. Beyond infrastructure, Betanzo’s work also focuses on water safety and affordability policies. SBN Detroit had the opportunity to interview Betanzo regarding the challenges and opportunities surrounding water management in Southeast Michigan, the lead pipe replacement efforts, and the steps needed to ensure sustainable and equitable access to clean water. Q: What is the impetus behind Safe Water Engineering? A: I started Safe Water Engineering in 2017 after the Flint water crisis revealed a critical need for specialized expertise in lead and drinking water safety. Our work focuses on helping water utilities meet and go beyond compliance requirements for drinking water safety and supporting communities by providing access to data, information, and education. Q: Can you tell us more about the city’s lead service line replacement program you designed and your work in drinking water policy? A: From 2017 to 2020, I worked with the Detroit Water and Sewerage Department (DWSD) to design the city’s lead service line replacement program. At the time, it wasn’t a regulatory requirement, but Detroit wanted to take a proactive approach. My work involved developing procedures for conducting lead service line replacements, incorporating replacements into broader infrastructure projects, conducting outreach to residents, and ensuring safety during replacements – like providing filters and flushing instructions. We also created a comprehensive program outlining responsibilities, timelines, and costs. The program is now underway, and the city has committed to replacing all lead service lines within ten years. Q: What are the biggest challenges communities in Southeast Michigan face in ensuring clean and safe water? A: Southeast Michigan’s water infrastructure relies on the backbone of water and sewer mains that Detroit built during the last century. It was designed and constructed for the time when it was built – a different population distribution and climate conditions than we have now. Over time, the region has faced significant changes, including population shifts, aging infrastructure, and climate impacts like altered precipitation patterns. Key challenges include the need to renew and replace aging water mains, sewer systems, and lead service lines, many of which were installed during the first half of the last century. Additionally, when water rates were set in many communities, they did not account for the necessary infrastructure renewal costs especially when they relied on existing infrastructure to expand. This becomes a challenge when we see this multitude of issues and challenges coinciding. It is essential to ensure public health protection is maintained as a top priority while developing water affordability programs to ensure everyone can afford access to that protection. Q: How has climate change impacted water systems in the region, particularly with issues like flooding, stormwater management, and aging infrastructure? A: The magnitude and frequency of extreme rainfall events have increased significantly in recent years, with Southeast Michigan experiencing multiple 100-year storms within a five-year span. The current infrastructure was not designed to handle such high volumes of water, leading to challenges like stormwater runoff overwhelming wastewater systems, and causing untreated releases into the Detroit River and Lake St. Clair. Additionally, urban development has created more paved surfaces, increased runoff, and disrupted natural drainage systems. This combination has led to significant flooding issues, further straining aging wastewater and stormwater systems. Q: Why are lead service lines a concern, and what is being done to address them in Southeast Michigan? A: In Michigan, community water systems were required to report the potential presence of lead service lines to the state in 2020. Statewide, up to 26% of these systems may have lead service lines, with Southeast Michigan particularly affected. For example, Detroit alone has up to 108,000 lead service lines, and potentially twice as many may exist in the surrounding communities. When water – although treated with corrosion control at treatment plants – passes through leaded materials, lead is frequently measured at the faucet – the point where it becomes drinking water. Lead in drinking water poses a significant health risk, as it is a neurotoxin with no safe level of exposure. Michigan was the first state that required mandatory lead service line replacement, mandating the removal of all lead service lines by 2041. A new federal rule accelerates this timeline nationally, requiring removal by 2037. Utilities are also required to notify residents if their home has lead pipes, enabling them to take precautions like using certified lead-reducing filters, which are highly effective when properly maintained. Q: What are the challenges involved in making Southeast Michigan’s drinking water safer and more affordable? A: Unlike housing, food, and electricity, Michigan lacks a statewide water affordability program. Rising water rates to fund infrastructure upgrades have made water unaffordable for some households, despite the public health necessity of these investments. There are programs like the Great Lakes Water Authority’s WRAP Program and DWSD’s Lifeline Plan, but the need for support exceeds the current resources available. Legislation to create a statewide water affordability program is under consideration, but challenges remain in addressing the broader affordability gap. Q: What strategies or technologies are being implemented to address lead contamination, and what additional steps are necessary beyond lead pipe replacement? A: Lead service line replacement is critical, but residents don’t have to wait for this to happen to reduce their exposure to lead in water. Certified lead-reducing filters are available and highly effective, provided they are properly maintained. Public education is essential to ensure residents understand the risks and how to take action. Additionally, programs like the Michigan Department of Health
Beacon Manufacturing – Supporting LEV Innovation at Newlab

Newlab at Michigan Central is home to a new 10,000-square-foot center for manufacturers of light electric vehicles (LEVs) – two- and three-wheeled vehicles mostly used for short distances, such as e-scooters and e-bikes. The center, dubbed “BeaconLab,” is operated by the newly created Beacon Manufacturing and will operate as a prototyping and logistics services manufacturing consultant, coordinator, and manufacturing hub for startups. It is equipped with several bays of assembly stations and state-of-the-art advanced machinery for robotic wheel building, laser-tube cutting, and robotic welding, to accelerate startups’ journey from concept to scale. The company leases the space from Newlab and is paid a fee for service by clients. Beacon Manufacturing also owns the Detroit Bikes brand, which it purchased in May from Cardinal Cycling Group. SBN Detroit interviewed CEO Gary Thornton, who previously was general manager of Detroit Bikes, about plans for the center, trends in LEV mobility, and other topics. Q: Beacon Manufacturing is focused on prototyping and logistics services for light electric vehicle (LEV) manufacturers. Explain what this entails. A: Our work at Beacon Manufacturing is twofold. First, we focus on prototyping, helping startups move from concept to tangible products. We take initial designs and create physical prototypes, allowing companies to refine their ideas and demonstrate proof of concept. The second part involves logistics services, acting as a third-party logistics (3PL) provider. We rent warehouse space specifically tailored for LEVs. Our team manages everything from storing products to shipping them out, ensuring each vehicle is operational before it leaves the facility. This includes handling specific challenges related to LEV batteries and ensuring compliance with regulations. Q: What types of companies and vehicles do you work with? A: We primarily collaborate with companies focused on last-mile delivery solutions. These startups are experimenting with new vehicle designs – e-scooters, e-bikes, and even electric tricycles – to solve urban transportation issues. One example of our work is with Civilized Cycles, a Newlab-based startup developing an e-bike with a tricycle and trailer attachment. Their solution addresses congestion in cities like New York, where specific zones impose fees on larger vehicles. Using a smaller LEV, they can transport goods efficiently without contributing to traffic or emissions. Q: What is the market potential for LEVs? A: The LEV market is massive and largely untapped. The need for efficient, low-emission transportation in urban areas is growing rapidly. We’re seeing interest from companies large and small, all looking to shift away from traditional vehicles. Cities like New York, Paris, and others are exploring ways to reduce congestion and improve air quality by shutting down portions of the city to standard vehicles or charging usage fees. LEVs fit perfectly into this evolving landscape, providing a practical and sustainable solution for short-distance travel and deliveries. Detroit’s ecosystem is ideal for LEV development with its roots in automotive design and manufacturing. Within a 20-mile radius, you can find suppliers for almost any component. We are working on LEVs as mentioned to address the last mile of delivery or traffic congestion, and we are currently working on an extremely rugged LEV that can be used to deploy power grids remotely for farmers and everything in between. There is a constant quest to come up with ideas to push the limits within Newlab and Southeast Michigan. Q: What challenges do LEV manufacturers face when scaling production? A: The biggest hurdle is cost. Traditional auto suppliers aren’t set up for small runs, so startups often face prohibitively high quotes. We are set up to focus on the individual manufacturing processes and tailor solutions to their scale. Another challenge is managing expectations. Many entrepreneurs want a final product that’s perfect, but early prototypes need to prioritize function over aesthetics. Our role is to guide them through this process, ensuring they have a viable product to show investors or test in the market. Q: What types of collaborations do you facilitate, and how do these impact LEV development? A: We enable companies to focus on their core strengths, such as design and marketing, by handling their logistics, manufacturing, and shipping needs. Currently, our warehouse hosts four electric motorcycle brands, two e-bike brands, and even an electric snowmobile company. These collaborations foster a supportive environment where different players in the LEV space can learn from each other, share resources, and accelerate their growth. Q: How do you see the LEV market evolving in the next 5–10 years, particularly in Southeast Michigan? A: The LEV market is poised for explosive growth, much like the e-bike market has experienced. The acceptance of battery-powered tools and vehicles is spreading quickly. From electric lawnmowers to chainsaws, we’re seeing a cultural shift toward cleaner, more efficient technologies. In Southeast Michigan, the manufacturing expertise built over decades in the auto industry provides a strong foundation for LEV innovation. Detroit is uniquely positioned to become a hub for LEV development and production. Q: How has Newlab enhanced Beacon Manufacturing’s ability to innovate and scale? A: Newlab has been transformative for our operations. The state-of-the-art machinery and resources available here – CNC (computer numerical control) machines, cleanrooms for electronics, woodshops, and metal shops – allow us to tackle complex manufacturing challenges. The collaborative environment also plays a crucial role. Being part of a community of innovators means we’re constantly learning and pushing the boundaries of what’s possible in LEV manufacturing. What are your plans for BeaconLab as it relates to the LEV industry in Southeast Michigan and beyond? A: We’re focused on scaling our operations to meet the growing demand. At Newlab, we’ve set up five fully stocked workbenches that startups can rent to assemble their vehicles. This hands-on space allows entrepreneurs to bring their concepts to life. Additionally, we’re expanding our offsite facilities to accommodate larger manufacturing runs. Our new 20,000-square-foot warehouse will support startups ready to scale from prototypes to larger production runs of 100 or even 1,000 units. Also, I’m extremely optimistic about Detroit’s future in this space. The city’s deep manufacturing expertise, coupled with the growing demand for
Shaping the Future: U-M’s First Vice Provost for Climate Action

This month, Shalanda Baker began her role as the University of Michigan’s inaugural Vice Provost for Sustainability and Climate Action. In this role, she will lead U-M’s interdisciplinary efforts on sustainability, focusing on integrating environmental topics into academic curricula, fostering critical research, and advancing the university’s sustainability goals. Previously, Baker served as the Director of the Office of Energy Justice and Equity at the U.S. Department of Energy, where she focused on advancing energy justice initiatives. With a background in law, energy policy, and environmental equity, she is also known for her academic work and advocacy for integrating justice into energy policy. SBN Detroit spoke with Baker to learn more about her vision, goals, challenges, and the collaborative approach she plans to bring to this new role. Q: As the first person to hold this new position, how do you envision setting the foundation? A: I’m spending a lot of time getting to know the university and the professors engaged in sustainability. I have two direct-report units, the Matthaei Botanical Gardens & Nichols Arboretum and the Graham Sustainability Institute. My initial focus is on understanding how all of the sustainability pieces across our large, decentralized campus fit together. Moving quickly is essential if we’re going to make an impact on climate, but building trust and relationships will be key to accelerating future efforts. I’m focusing on three main areas: Curriculum – I’m thinking about ways to ensure every student has a foundational understanding of climate and sustainability and how climate connects to their field. This could involve creating specific requirements or expanding existing ones. Research and Innovation – I’m interested in how we can further support our existing institutes and centers that are advancing work in climate and sustainability, particularly in removing any barriers they face. Community and Impact – Michigan is in a unique position to lead on sustainability, and I want to consider how we can best advance community impact in our state. Q: Given your diverse background in policy and energy justice, how does your experience shape your approach to this new role? A: I guess I am a bit of a unicorn—having experience as a law professor, a public policy professor, and an entrepreneur. I’ve created organizations that bring community voices into complex policy discussions, which will be invaluable here. My experience in the Biden administration, working with the Department of Energy, involved coordinating scientists and engineers to advance energy justice. At U-M, I’ll be taking a similar interdisciplinary approach, working across departments and disciplines to move us all in the same direction. I know it’s a challenging role, but it builds on everything I’ve done before. Q: U-M has various departments and initiatives focused on sustainability. How will you work with these different entities to create a unified approach across campus? A: The university is known for its decentralized structure, and I appreciate the “letting a million flowers bloom” approach to innovation. I don’t want to stifle that creativity, but I do believe a central set of priorities can support and amplify the work that’s happening while offering a clear vision. I’ll be establishing an internal executive council to advise on our academic approach and to serve as a sounding board to validate and advance our goals. Another focus will be removing bureaucratic barriers that can slow down progress. Finally, I’ll be focusing on creating a clear framework that all our work can fit within. For example, I’m very excited about big, unifying concepts like “Just Transition,” which would frame our sustainability work within a commitment to equity and justice. Q: What specific goals or benchmarks are you looking to achieve in the first year or two? A: President Ono’s Vision 2034 provides an ambitious roadmap, with sustainability and climate action as key pillars. I’m excited to develop concrete metrics within that framework in partnership with our advisory council. One of my immediate goals is to position Michigan as a hub for climate action by convening conversations around the significant investment dollars flowing into the state and country. I’d also love to establish a Michigan Climate Week, hosting interdisciplinary events that bring together scholars, policymakers, and community leaders. Additionally, I’m exploring opportunities to convene global thinkers at U-M, much like the Institute for Social Research, but focused on climate solutions. Q: How will partnerships play a role in sustainability efforts under your leadership? A: Partnerships are essential. I’m meeting with other university leaders in similar roles, and I’ve spoken at places like the University of Texas and Arizona State to learn how they approach sustainability. No university can tackle this alone, and we’ll benefit from building on each other’s work. We also need strong partnerships with state government and local leaders; these relationships will be crucial to achieving our goals. Q: To that end, U-M is part of the University Research Corridor with WSU and Michigan State. What does your future work look like here, and how do you think U-M’s efforts impact this larger initiative? A: I’m excited to engage deeply with the University Research Corridor (URC). President Ono is committed to ensuring U-M is an active collaborator. Climate and sustainability are areas where we can work together effectively, especially with the influx of investment dollars Michigan is seeing for climate-related projects. The URC offers a platform for a coordinated approach, allowing us to make a more substantial impact across the state and lead in this area. Q: How will the university’s Innovation District in Detroit factor into U-M’s sustainability and climate action goals? Could this space serve as a model for sustainable urban development? A: The Innovation District in Detroit is a promising opportunity, though it’s still in the early stages. Detroit is undergoing incredible changes, and with my background in energy justice, I’m very interested in how this district can address both environmental and socioeconomic challenges. This area could become a prime example of how clean energy initiatives can drive economic and social transformation in cities that have historically faced challenges.
Restoring Detroit’s Tree Canopy

Detroit was once known as the “city of trees,” but disease, invasive insects, and budget cuts over time have decimated our area’s distinctive tree canopy. But efforts are underway to replenish trees while also providing job training, green spaces, education, and community engagement. On Oct. 31, 2024, Sustainable Business Network Detroit hosted an informative discussion sponsored by the Fred and Barbara Erb Family Foundation regarding these efforts and how restoring tree canopy benefits individuals, neighborhoods, businesses, and the economy. The panelists were: Lionel Bradford, president and executive director, Greening of Detroit, a nonprofit focused on enhancing the quality of life for Detroiters by planting trees, providing job training, and involving youth in the education of the natural environment. It involves Detroiters in the process through community engagement, green spaces, education, and jobs. Maureen Donohue Krauss, president and CEO, Detroit Regional Partnership. DRP works to serve as a single point of contact for information, connection to services, incentives, and data for businesses who want to locate or expand in the 11-county Southeast Michigan Region. Robert Riney, president and CEO, Henry Ford Health, and leader of HFH’s $4 billion Destination: Grand initiative. The project includes a $2.2 billion expansion of HFH’s Detroit campus anchored by a new state-of-the-art hospital facility that will span 1.2 million square feet. It includes a 20-story patient tower, with three floors dedicated to providing intensive inpatient physical medicine and rehabilitation in partnership with the Shirley Ryan AbilityLab and its own Central Energy Hub, making it one of the largest fully electric-capable hospitals in the country. The event was moderated by Terry Barclay, president and CEO of Inforum, and chair of SBN Detroit. Some of the takeaways: The case for tree canopy Lionel: Growing up in Southeast Louisiana – which is very hot – you quickly learn the value of a tree. It’s also a sportsman’s paradise – We did a lot of hunting, fishing, and camping, and I developed a great appreciation for the environment and its value. I also love people. The work that we do is about people at the end of the day, so when we do this work it’s to build community and neighborhoods. We try our very best – changing landscapes and lives is our motto. When someone has been incarcerated for 20 years and needs a second chance, they can come through your program – the Detroit Conservation Corps – and they can be trained and support their families. You can train people to put trees in the ground and maintain them. Maureen: Part of my role is to inform people that economic development is more than just a new factory in your town, more than just a tax abatement. It’s creating an environment that both people and companies want to be in. Sixty percent of our projects are from international companies – when people come here for the first time, they have expectations of what a first-class city looks like… Think about Paris and its phenomenal tree canopies. People want that here. I did a little research before this event: Homes with trees sell two days faster and for 15% more than homes without. Tree value increases with age – the cost of trees has 100% payback. Three properly placed trees can reduce air conditioning by 56% and reduce home heating bills by 10% by serving as a windbreak. Bob: You may think what does a healthcare system have to do with tree canopies? HFH is absolutely committed to increasing the health of communities – the role that hospitals and doctors play is about 20%. We don’t underestimate the power of that 20%, but true health – meaning how long people will live and have a high-value life – is a partnership of healthcare, policy, and environmental factors – which are huge. You may have seen that the biggest determinant of your health is the ZIP Code that you live in. You need to have fabulous healthcare, access to it, economic security, environmental security, and food and nutrition security. At HFH we need to be a population health company – we pick and choose how we should make our mark and one of the things we believe in is the power of the tree. We have to walk the talk. The economic benefits of tree canopy Maureen: Our organization has three pillars: market, grow, and support. It’s so much better now. People are curious to hear about Detroit and see what’s happening. Talent is No. 1 – we have the second-highest amount of engineers in the country and have experienced manufacturing talent. As one of my teammates says, it’s workforce, weather, and water. When you talk about climate change, Michigan will be in the top five least affected. The right amount of tree canopy and how trees are sourced Lionel: American Forests did a study and determined that a city the size of Detroit should be at 40%. Right now we’re at 26%. We lose about 2,000 trees a year, so those have to be taken into account. We get most of our trees from New York and Indiana and, more recently, Wholesale Tree Inc. in Northern Michigan. More importantly, we’re growing our own trees now – running the Walter Meyers Nursery in Rouge Park, which is owned by the city. We’re very intentional about turning into a full-fledged operational business. Last year, we harvested our first set of trees. We have lost a lot of trees over time, and the reason we have lost a lot of those is because the city lacked the resources, and dead trees were not removed and were taken down by storms. This administration has done a great job by taking trees down when dead and dying. Working with DTE has been quite thrilling – they have given financial support to planting trees but also to making sure that the next generation of environmental stewards are trained by supporting our Green Corps summer programs and also the tree
Tackling Water Infrastructure and Coastal Challenges in Michigan

Ann Arbor-based CIS was founded in 2013 by Corvias, a Rhode Island-based company that provides infrastructure services to the military, state and local governments, and higher education. In 2023, it was spun off as an independent company whose services center on solving the complicated challenges of outdated and ineffective stormwater infrastructure. SBN Detroit interviewed the company’s CEO, Sanjiv K. Sinha, Ph.D., and Sri Vedachalam, Ph.D., Senior Director of Water Equity and Climate Resilience, about two recent projects – an advisory and research project focused on coastal conservation for The Nature Conservancy, a global conservation nonprofit, and an analysis of Great Lakes Regional Poll (GLRP) data for a binational federal agency. Q: What were the primary goals of the coastal conservation analysis services you provided for The Nature Conservancy? Vedachalam: The main goal of this project was to conduct a comprehensive scoping exercise to identify and understand the key challenges faced by Great Lakes communities in relation to fluctuating water levels, high-energy waves, and climate-induced shoreline erosion. Shoreline erosion in particular is becoming increasingly prevalent due to climate change, and our focus was to assess how these environmental stressors impact both the natural and built environments. By gaining a clearer understanding of these challenges, our goal is to help surrounding communities become more resilient. This involves preparing infrastructure to withstand the ongoing and future effects of these changes. Q: What are the key environmental challenges currently affecting coastal areas in Southeast Michigan and the broader Great Lakes region? Vedachalam: Coastal areas in the Great Lakes region face a variety of interconnected challenges, mainly involving three key components: the lake itself, the shoreline, and the watershed. Rising and fluctuating water levels, coupled with stronger energy waves, contribute to significant shoreline erosion. These forces can disturb lakebed sediments, which, in turn, impact aquatic organisms and their habitats. In addition, increased rainfall—often intense and unpredictable—introduces higher levels of pollutants and contaminants into the lakes, further exacerbating environmental stress. The watershed is also heavily affected by these factors, particularly in terms of increased flooding, which places additional strain on both natural ecosystems and human infrastructure. Addressing these challenges requires a multifaceted approach that combines both natural and engineered infrastructure to mitigate damage and enhance community resilience. Sinha: To add some context, climate change is causing regions around the Great Lakes to experience more rainfall in shorter periods of time, leading to severe issues such as flooding and water quality challenges such as algal bloom in western Lake Erie. The frequency and intensity of these rain events are increasing, which complicates regional water management. As an example of changed rainfall, based on 1992 estimates, a hundred-year storm in Detroit used to be 4.4 inches of rainfall, while in 2019, a similar storm produced 5.2 inches—an additional two billion gallons of water. According to SEMCOG, by 2050, storms of this nature could result in 7.7 inches of rainfall, adding another six billion gallons of water. Preparing communities and infrastructure for such occurrences is essential as we look toward the future. And these massive challenges present an incredible opportunity for the region to grow its economy by deploying capital that leads to local jobs. Q: Based on this project, what specific actions or solutions is CIS proposing to protect Great Lakes coastal communities? Vedachalam: It will take a balanced approach that integrates both hard infrastructure and nature-based solutions to address the complex challenges these coastal communities face. One focus is wetlands, which historically covered vast areas across the Great Lakes region. Over time, urbanization has led to the loss of many of these wetlands, reducing their ability to naturally manage stormwater. So, we need to design infrastructure to help slow down stormwater runoff before it reenters the lakes. Additionally, we need to stabilize dunes and other natural barriers, which play a critical role in protecting the shoreline from erosion and the impacts of fluctuating water levels. These natural elements act as a first line of defense, mitigating the force of incoming water while preserving ecosystems. Another critical area of focus is people. It’s crucial to involve residents in these efforts to ensure that the solutions we propose are compatible with how people live and interact with these spaces. Through collaborative efforts with the community, we can foster a sense of ownership and ensure that the projects we implement meet both environmental and societal needs. Q: What unique opportunities or risks does Southeast Michigan face regarding water management and coastal resilience compared to other areas of the Great Lakes? Vedachalam: Southeast Michigan presents a unique mix of challenges. Historically, this region was rich in biodiversity, with vast expanses of marshes and wetlands serving as natural buffers against flooding and erosion. However, as the area became more urbanized and industrialized, many of these natural systems were altered or lost. Despite this, there remains a kind of “ecosystem memory,” where there is potential to restore these natural practices and processes in some areas. One of the main challenges the region faces is balancing the needs of a highly industrialized and sprawling urban environment with the goal of restoring natural systems. Legacy pollution from past industrial activities continues to pose a risk. There is growing interest from communities to return to more sustainable, nature-based solutions. Q: To this end, what is the importance of polling data in understanding public sentiment on Great Lakes water issues? Vedachalam: Polling data is critical because it allows us to measure public sentiment at a specific point in time and over time. Public sentiment can be dynamic, especially following significant events, much like we see in political polling. Attitudes often shift slowly over time, so conducting annual polls helps track these changes and offers insights into how public perceptions and concerns evolve. Sinha: The Great Lakes represent a highly complex system, involving eight U.S. states and two Canadian provinces. This vast geographic area makes it essential to carefully assess how public sentiment varies across the region. Polling helps identify which stakeholders hold specific concerns and how
The Growing Role of Refill Shops

The concept of refilling containers to reduce plastic waste and promote sustainability is taking hold in many forms. From pop-ups to brick-and-mortar, Refill Shops, known as refilleries, are becoming more prevalent. To find out more about the industry, SBN Detroit interviewed three local business owners: Corey Thompson, founder of Red Oak Refillery with installations in two locations; Jessica Cichowlas, owner of BYOC with brick-and-mortar locations in Ann Arbor and Plymouth, and Ashby Cummings, owner of MI-Fillosophy in Plymouth. Q: Why a refillery? Thompson: The inspiration for Red Oak Refillery came from my time working at Mama Suds, a brand focused on natural household cleaners. By 2021, we were seeing that roughly 30% of Mama Suds’ wholesale sales were directed to refilleries, predominantly on the East and West coasts. This made it clear that there was a need for refill services in other areas as well. I started my business as a pop-up in Oxford in 2021, working part-time with my product set up at a coffee shop in Lake Orion. Setting up my products for a few hours each day gave me the opportunity to fine-tune my model. Instead of going the traditional brick-and-mortar route, I opted for a distributed model with installations in businesses that align with my values. I currently operate in two locations and am preparing to open a third, all while continuing my role at Mama Suds. Cichowlas: I was a customer at BYOC, and the mission of reducing single-use plastic resonated deeply with me. The owner announced she was selling and I took over the two locations – Plymouth and Ann Arbor. My goal remains to uphold that mission, with a focus on sourcing from local family-run businesses that reflect our core values of sustainability and environmental responsibility. Cummings: Mi-Fillosophy launched in February 2023 with a focus on food rather than lifestyle products, which sets us apart from most refill shops. I noticed a significant gap in the market, particularly after many bulk food stores shut down during the pandemic, and I wanted to address that gap by offering consumers a more sustainable way to shop for food. Q: How has the community responded to the concepts of container reuse and the reduction of single-use plastics? Thompson: The community response has been positive. For some, the idea of a refillery is novel and intriguing, though it’s a concept that has been common in places like India for centuries. Others have embraced the concept and seek out refill shops that align with their sustainability goals. Beyond that, the community also has actively sought me out for collaboration. For instance, Orion Oaks Elementary reached out for assistance in achieving certification through the Green Schools Program, and I got invited to speak at various summits and conferences. I think refilleries naturally become hubs for education and sustainable practices within their communities. Cichowlas: The Ann Arbor community has embraced the refill shop a bit faster, I think, because the city has committed to sustainability goals – aiming for carbon neutrality by 2030. So, our store’s mission really resonates there. We’ve seen growing support in Plymouth as well, as more people begin adopting zero-waste practices. Cummings: Customers have responded positively to a refill shop focused on food. Many like the option of purchasing smaller amounts or just what they need, which helps them avoid unnecessary waste. Q: How has your clientele evolved over time? Thompson: Our customer base continues to consist of both repeat visitors and newcomers. Some people actively seek out refill shops as part of their efforts to live more sustainably, while others are discovering the concept for the first time. It’s rewarding to see that growth and interest. Cichowlas: We’ve developed a strong core of repeat customers, most of whom are local. However, we also see people traveling from further distances to stock up on refills, which is a testament I think to more people adopting sustainability practices. Cummings: I’ve drawn customers from all around metro Detroit, but more and more refill shops are opening so people don’t have to drive as far to reach them, which helps from an emissions reduction standpoint and therefore is great. Many people from the local community here have become regulars. Q: What challenges have you faced in operating a refill shop? Thompson: One of the biggest challenges is that this industry is still relatively new, so we’re dealing with the typical obstacles any startup faces. Beyond that, educating the public about the refill concept is a continuous effort. Cichowlas: Our main challenge is keeping our costs competitive with larger chains while maintaining our commitment to sustainability and local sourcing. Cummings: For me, since my focus is food, managing food safety is a challenge. Keeping track of expiration dates and managing recalls. There’s also a need for constant education, particularly around bulk food safety, which some customers are unfamiliar with. Q: What role do refill shops play in educating the community on sustainability? Thompson: Refill shops play a critical role in community education, whether we intended it or not. Customers come to us with questions, and we find ourselves being the ones to provide answers. It’s an organic process — people look to us for guidance. I also think the local refill shops act as an example and a reminder to think more sustainably. Cichowlas: I believe refill shops have an obligation to educate the community. From understanding which ingredients are safe to selecting products that align with sustainable values, we can remove a lot of the guesswork for people and it’s a service that’s important. Zero-waste can seem intimidating, so part of our mission is to make it accessible and achievable for everyone. Cummings: The presence of a refill shop brings sustainability to the forefront of community awareness. Every day, whether it’s answering questions about recycling or helping customers choose eco-friendly products, we’re educating our customers. Q: How do refill shops help reduce the carbon footprint? Thompson: The impact is significant, even with small changes. Just using a container
USGBC: Strategies, Challenges in Designing Environmentally Responsible Buildings

The U.S. Green Building Council (USGBC) is a nonprofit organization dedicated to fostering prosperous, healthy, and resilient communities through sustainable practices. With a focus on shaping the built environment, USGBC believes that buildings and communities can be designed, constructed, and operated in ways that benefit both people and the planet. To this end, USGBC launched the LEED (Leadership in Energy and Environmental Design) certification program in 2000, which is now one of the most widely recognized and used green building rating systems in the world, promoting sustainable building practices and helping to reduce the environmental impact of buildings and communities. SBD Detroit interviewed Lana Crouse, Regional Director U.S. Market Transformation & Development for USGBC, and joining us was Laura Long, who – as a Senior Designer at NORR, a global architecture and engineering firm – offers insights from a design perspective as it relates to Southeast Michigan. Q: What role do buildings play in greenhouse gas emissions? Long: 42% of annual CO2 emissions come from the built environment. 27% of this is from operational carbon, which is the carbon created from operating and maintaining the life of the building. The remaining 15% of CO2 emissions come from embodied carbon, the greenhouse gas emissions emitted from the manufacturing, transportation, installation, maintenance, construction, and disposal of building and infrastructure materials. Crouse: Since buildings account for this significant portion of greenhouse gases and resource depletion, it’s crucial that we design them to minimize resource use such as water and electricity and focus on site selection so that ultimately buildings are healthier for those who inhabit them. By doing so, they do less harm to the environment. When designing and building structures, we can create spaces that also address critical issues like embodied carbon and operational carbon – the issues Laura outlined. Q: What are the biggest trends in green building currently? Long: One major trend is the requirement to track greenhouse gas emissions, which became a prerequisite in LEED 4.0 in March. This means that buildings cannot achieve LEED certification without accounting for these emissions. Another emerging trend is creating a full building lifecycle assessment (LCA) early in the design process. This assessment allows architects to evaluate the environmental impacts of products across their entire lifecycle. LCAs are pushing designers to focus on selecting materials that can reduce both embodied carbon and operational carbon, while also promoting a “cradle-to-cradle” approach to eliminate waste and help encourage manufacturers to develop systems to reclaim products at the end of their lifecycle and reuse them. Crouse: This approach – and LEED Certification – applies to all building types, including homes, communities, and districts. In Southeast Michigan, Royal Oak and Oakland County just certified under the LEED for Cities program, which shows that it’s not just about individual buildings — it’s about creating more sustainable communities where all factors, including utilities and quality of life, are taken into account. Q: How does Michigan’s approach to green building compare to the rest of the country? Crouse: Michigan ranks 20th in the total number of LEED projects among all U.S. states and territories. Progress made in green building across the U.S. is driven by both policies or mandates at the state or local level as well as by the market. While we are seeing market-driven growth in the state, Michigan lacks some of these comprehensive mandates. However, we are seeing some local governments take action. Cities like Ann Arbor and Detroit have started to establish benchmarking ordinances, but we still have opportunities to grow and implement more sustainable building codes. Q: What are the challenges for green building in Southeast Michigan? Long: One challenge is having enough builders and contractors who understand green building practices. Another is that municipalities and local governments need to drive the shift toward more sustainable building codes. While we have champions in the private sector, like Bedrock and the Erb Family Foundation, sustainability often needs to be dictated by governing bodies for widespread adoption. Crouse: A major challenge for design teams is budget constraints. Many owners believe high-efficiency operating systems cost more, and while upfront costs may or may not be higher, they lead to significant savings and environmental benefits over time. Sustainable buildings also improve employee retention and productivity by prioritizing health and well-being through elements like biophilic design and thermal comfort. Q: What are the opportunities for green building in Southeast Michigan? Crouse: Education is key — especially when it comes to helping people understand how sustainable buildings contribute to the health and well-being of those who live and work in them. Cities like Detroit and Ann Arbor are driving these efforts, but we need to reach surrounding areas to continue the push for green building. Q: Are there any standout green building projects in Southeast Michigan? Crouse: Huntington Place in Detroit achieved LEED Gold certification, the first structure of its size in Michigan to do so. It was the first convention center certified through LEED v4.1 in the world. The WPP space (Marquette Building, 243 West Congress, Detroit) is another example, recently renovated and now owned by Bedrock. Q: How do Michigan’s climate and geography affect green building strategies? Long: Michigan’s cool, humid climate and proximity to the Great Lakes present unique challenges. One of the biggest issues we face is managing stormwater to prevent pollution in the Great Lakes. Separating sewer and stormwater systems is crucial to reducing runoff into our water sources. Using LEED and low-impact development strategies, we can manage stormwater more effectively within individual project sites. Crouse: LEED is constantly evolving to meet these challenges. In 2025, we’ll roll out LEED version 5, which will place an even greater emphasis on climate resilience, stormwater management, and designing buildings to withstand extreme weather events. Q: What do you think USGBC’s role will be in the future of green building? Crouse: USGBC will continue to provide guidance to help development teams achieve sustainability and high-performing building goals. Our role is to understand the market and continually push things
Phinia’s Twin Focus: Efficiency Today and a Carbon-Free Future

Based in Auburn Hills, Mich., Phinia (NYSE: PHIN) is a publicly traded company spun off from BorgWarner in July 2023 that is dedicated to advancing sustainable mobility solutions. It specializes in fuel systems, electrical systems, alternative fuel technologies, and aftermarket products, Phinia aims to enhance fuel efficiency, reduce emissions, and help drive the transition to cleaner, low-carbon fuels. SBN Detroit interviewed Todd Anderson, Phinia’s Chief Technology Officer, to explore the implementation of alternative fuel systems and their real-world applications. Q: Phinia has allocated 78% of its research and development to fuel efficiency and alternative fuel technologies and 30% of that to zero- and low-carbon fuel systems. Can you tell us more about this initiative? A: We are committed to driving efficiencies today while moving toward a carbon-neutral and ultimately carbon-free future. It’s important not to focus solely on future technologies when there is a clear need to improve our current energy systems. By allocating 78% of our budget to fuel efficiency and alternative fuel technologies, we are addressing both immediate and long-term needs. This investment allows us to work on improving the systems that our customers currently use and are ordering while also investing in alternative fuels that will help us achieve decarbonization over time. Our funding applies to all aspects of our business. The research and development aspect, mentioned above, but also investing in other business functions, including manufacturing, supply chain, and quality to ensure that as a business we are ready to move forward into a new era. Q: Describe the different alternative fuel systems and what they are used to power today. A: Each of these fuel systems serves specific purposes and applications, providing a range of options for different vehicle types and needs. Advanced Gasoline Direct Injection (GDi) Systems are primarily used to power lighter vehicles, from passenger cars to medium-duty vehicles. Recently, we released a 500-bar GDi system with this higher pressure, designed to improve fuel economy and reduce emissions for passenger cars and light commercial vehicles. Hydrogen fuel cell technology powers electric vehicles (EVs) using an onboard fuel cell that uses hydrogen as fuel. This system is suitable for a range of vehicles, from lighter passenger cars to medium-duty vehicles, and could be particularly efficient for delivery vehicles in controlled environmental settings. Hydrogen Internal Combustion Engine (ICE) technology is well-suited for heavier applications where high loads, continuous operation, and challenging environments are common, such as heavy commercial vehicles and medium commercial vehicles. Hydrogen ICE provides the power and performance expected from traditional diesel or gasoline systems but without harmful emissions to the environment. Q: How is developing technologies for alternative fuels different from working on traditional combustion engines? A: Interestingly, it’s quite similar in many ways. The ways in which we develop liquid fuel systems for gasoline or diesel engines are directly applicable as we move toward alternative fuels. The basic physical principles, such as combustion and fluid metering, remain the same. The difference lies in adapting and refining the elements of these systems to work with alternative fuels. For example, in a hydrogen internal combustion engine, hydrogen gas is injected into the combustion chamber instead of gasoline. While the core technology remains similar, we need materials that can seal and respond appropriately to hydrogen gas, along with some design refinements. Q: What are the main challenges in creating and adopting alternative fuel technologies? A: The technology to use alternative fuels in vehicles is already well understood and has been proven effective. However, the challenge lies in the ecosystem needed to support these fuels. Take hydrogen internal combustion engines (ICE) as an example. While we have vehicles running effectively with this technology, faster market adoption requires sustainable hydrogen production at a scale that isn’t currently available. The infrastructure to deliver this sustainable alternative fuel to the point of use also needs to be in place. Currently, the cost of hydrogen is higher than will be acceptable for a broad market adoption. In my discussions with government officials in the U.S., Europe, and Asia, my call to action has been clear: ensure sufficient production of renewable hydrogen while developing the infrastructure needed to deliver it. This will help reduce costs and support wider adoption. Q: What do you see as the biggest opportunities for growth and innovation in alternative fuels? A: We see significant growth opportunities in the transportation sector, whether in passenger cars or commercial vehicles. In the shorter term, there is substantial interest in commercial vehicles due to their specific operating conditions. For example, there is great potential with captive fleets operating on fixed routes, where we can achieve significant progress without needing to rely on widespread public infrastructure for hydrogen deployment. This allows us to make meaningful advancements in those areas. Additionally, there is interest in alternative fuels beyond just transportation. We’re seeing opportunities in industrial applications, marine sectors, and stationary power generation. Industries like marine shipping, especially large vessels, are actively exploring alternative fuels. So, while there are significant opportunities in transportation, they extend far beyond that sector. Q: How does Phinia work with partners in the alternative fuel industry? Can you share any recent partnerships? A: Partnerships are critical for us — no company can operate as an island. We partner with government bodies such as the U.S. Department of Energy, the Environmental Protection Agency (EPA), the European Commission, and the UK Transport Authority. We also work closely with our customers to support their vehicle roadmaps and align our innovations to meet their needs. We have close partnerships with universities and educational institutions, which provide access to their innovative and advanced thinking while supporting communities and students alike. In addition, collaboration with our supply chain partners is vital. Q: How does Phinia ensure sustainability is integrated into product design and development, particularly with your “Design for Environment” approach? A: Sustainability is critical in the design process. Our design reviews include considerations like the potential for remanufacturing and the end-of-life designation for products, which are vital elements of a circular