Shaping the Future: U-M’s First Vice Provost for Climate Action
This month, Shalanda Baker began her role as the University of Michigan’s inaugural Vice Provost for Sustainability and Climate Action. In this role, she will lead U-M’s interdisciplinary efforts on sustainability, focusing on integrating environmental topics into academic curricula, fostering critical research, and advancing the university’s sustainability goals. Previously, Baker served as the Director of the Office of Energy Justice and Equity at the U.S. Department of Energy, where she focused on advancing energy justice initiatives. With a background in law, energy policy, and environmental equity, she is also known for her academic work and advocacy for integrating justice into energy policy. SBN Detroit spoke with Baker to learn more about her vision, goals, challenges, and the collaborative approach she plans to bring to this new role. Q: As the first person to hold this new position, how do you envision setting the foundation? A: I’m spending a lot of time getting to know the university and the professors engaged in sustainability. I have two direct-report units, the Matthaei Botanical Gardens & Nichols Arboretum and the Graham Sustainability Institute. My initial focus is on understanding how all of the sustainability pieces across our large, decentralized campus fit together. Moving quickly is essential if we’re going to make an impact on climate, but building trust and relationships will be key to accelerating future efforts. I’m focusing on three main areas: Curriculum – I’m thinking about ways to ensure every student has a foundational understanding of climate and sustainability and how climate connects to their field. This could involve creating specific requirements or expanding existing ones. Research and Innovation – I’m interested in how we can further support our existing institutes and centers that are advancing work in climate and sustainability, particularly in removing any barriers they face. Community and Impact – Michigan is in a unique position to lead on sustainability, and I want to consider how we can best advance community impact in our state. Q: Given your diverse background in policy and energy justice, how does your experience shape your approach to this new role? A: I guess I am a bit of a unicorn—having experience as a law professor, a public policy professor, and an entrepreneur. I’ve created organizations that bring community voices into complex policy discussions, which will be invaluable here. My experience in the Biden administration, working with the Department of Energy, involved coordinating scientists and engineers to advance energy justice. At U-M, I’ll be taking a similar interdisciplinary approach, working across departments and disciplines to move us all in the same direction. I know it’s a challenging role, but it builds on everything I’ve done before. Q: U-M has various departments and initiatives focused on sustainability. How will you work with these different entities to create a unified approach across campus? A: The university is known for its decentralized structure, and I appreciate the “letting a million flowers bloom” approach to innovation. I don’t want to stifle that creativity, but I do believe a central set of priorities can support and amplify the work that’s happening while offering a clear vision. I’ll be establishing an internal executive council to advise on our academic approach and to serve as a sounding board to validate and advance our goals. Another focus will be removing bureaucratic barriers that can slow down progress. Finally, I’ll be focusing on creating a clear framework that all our work can fit within. For example, I’m very excited about big, unifying concepts like “Just Transition,” which would frame our sustainability work within a commitment to equity and justice. Q: What specific goals or benchmarks are you looking to achieve in the first year or two? A: President Ono’s Vision 2034 provides an ambitious roadmap, with sustainability and climate action as key pillars. I’m excited to develop concrete metrics within that framework in partnership with our advisory council. One of my immediate goals is to position Michigan as a hub for climate action by convening conversations around the significant investment dollars flowing into the state and country. I’d also love to establish a Michigan Climate Week, hosting interdisciplinary events that bring together scholars, policymakers, and community leaders. Additionally, I’m exploring opportunities to convene global thinkers at U-M, much like the Institute for Social Research, but focused on climate solutions. Q: How will partnerships play a role in sustainability efforts under your leadership? A: Partnerships are essential. I’m meeting with other university leaders in similar roles, and I’ve spoken at places like the University of Texas and Arizona State to learn how they approach sustainability. No university can tackle this alone, and we’ll benefit from building on each other’s work. We also need strong partnerships with state government and local leaders; these relationships will be crucial to achieving our goals. Q: To that end, U-M is part of the University Research Corridor with WSU and Michigan State. What does your future work look like here, and how do you think U-M’s efforts impact this larger initiative? A: I’m excited to engage deeply with the University Research Corridor (URC). President Ono is committed to ensuring U-M is an active collaborator. Climate and sustainability are areas where we can work together effectively, especially with the influx of investment dollars Michigan is seeing for climate-related projects. The URC offers a platform for a coordinated approach, allowing us to make a more substantial impact across the state and lead in this area. Q: How will the university’s Innovation District in Detroit factor into U-M’s sustainability and climate action goals? Could this space serve as a model for sustainable urban development? A: The Innovation District in Detroit is a promising opportunity, though it’s still in the early stages. Detroit is undergoing incredible changes, and with my background in energy justice, I’m very interested in how this district can address both environmental and socioeconomic challenges. This area could become a prime example of how clean energy initiatives can drive economic and social transformation in cities that have historically faced challenges.
Restoring Detroit’s Tree Canopy
Detroit was once known as the “city of trees,” but disease, invasive insects, and budget cuts over time have decimated our area’s distinctive tree canopy. But efforts are underway to replenish trees while also providing job training, green spaces, education, and community engagement. On Oct. 31, 2024, Sustainable Business Network Detroit hosted an informative discussion sponsored by the Fred and Barbara Erb Family Foundation regarding these efforts and how restoring tree canopy benefits individuals, neighborhoods, businesses, and the economy. The panelists were: Lionel Bradford, president and executive director, Greening of Detroit, a nonprofit focused on enhancing the quality of life for Detroiters by planting trees, providing job training, and involving youth in the education of the natural environment. It involves Detroiters in the process through community engagement, green spaces, education, and jobs. Maureen Donohue Krauss, president and CEO, Detroit Regional Partnership. DRP works to serve as a single point of contact for information, connection to services, incentives, and data for businesses who want to locate or expand in the 11-county Southeast Michigan Region. Robert Riney, president and CEO, Henry Ford Health, and leader of HFH’s $4 billion Destination: Grand initiative. The project includes a $2.2 billion expansion of HFH’s Detroit campus anchored by a new state-of-the-art hospital facility that will span 1.2 million square feet. It includes a 20-story patient tower, with three floors dedicated to providing intensive inpatient physical medicine and rehabilitation in partnership with the Shirley Ryan AbilityLab and its own Central Energy Hub, making it one of the largest fully electric-capable hospitals in the country. The event was moderated by Terry Barclay, president and CEO of Inforum, and chair of SBN Detroit. Some of the takeaways: The case for tree canopy Lionel: Growing up in Southeast Louisiana – which is very hot – you quickly learn the value of a tree. It’s also a sportsman’s paradise – We did a lot of hunting, fishing, and camping, and I developed a great appreciation for the environment and its value. I also love people. The work that we do is about people at the end of the day, so when we do this work it’s to build community and neighborhoods. We try our very best – changing landscapes and lives is our motto. When someone has been incarcerated for 20 years and needs a second chance, they can come through your program – the Detroit Conservation Corps – and they can be trained and support their families. You can train people to put trees in the ground and maintain them. Maureen: Part of my role is to inform people that economic development is more than just a new factory in your town, more than just a tax abatement. It’s creating an environment that both people and companies want to be in. Sixty percent of our projects are from international companies – when people come here for the first time, they have expectations of what a first-class city looks like… Think about Paris and its phenomenal tree canopies. People want that here. I did a little research before this event: Homes with trees sell two days faster and for 15% more than homes without. Tree value increases with age – the cost of trees has 100% payback. Three properly placed trees can reduce air conditioning by 56% and reduce home heating bills by 10% by serving as a windbreak. Bob: You may think what does a healthcare system have to do with tree canopies? HFH is absolutely committed to increasing the health of communities – the role that hospitals and doctors play is about 20%. We don’t underestimate the power of that 20%, but true health – meaning how long people will live and have a high-value life – is a partnership of healthcare, policy, and environmental factors – which are huge. You may have seen that the biggest determinant of your health is the ZIP Code that you live in. You need to have fabulous healthcare, access to it, economic security, environmental security, and food and nutrition security. At HFH we need to be a population health company – we pick and choose how we should make our mark and one of the things we believe in is the power of the tree. We have to walk the talk. The economic benefits of tree canopy Maureen: Our organization has three pillars: market, grow, and support. It’s so much better now. People are curious to hear about Detroit and see what’s happening. Talent is No. 1 – we have the second-highest amount of engineers in the country and have experienced manufacturing talent. As one of my teammates says, it’s workforce, weather, and water. When you talk about climate change, Michigan will be in the top five least affected. The right amount of tree canopy and how trees are sourced Lionel: American Forests did a study and determined that a city the size of Detroit should be at 40%. Right now we’re at 26%. We lose about 2,000 trees a year, so those have to be taken into account. We get most of our trees from New York and Indiana and, more recently, Wholesale Tree Inc. in Northern Michigan. More importantly, we’re growing our own trees now – running the Walter Meyers Nursery in Rouge Park, which is owned by the city. We’re very intentional about turning into a full-fledged operational business. Last year, we harvested our first set of trees. We have lost a lot of trees over time, and the reason we have lost a lot of those is because the city lacked the resources, and dead trees were not removed and were taken down by storms. This administration has done a great job by taking trees down when dead and dying. Working with DTE has been quite thrilling – they have given financial support to planting trees but also to making sure that the next generation of environmental stewards are trained by supporting our Green Corps summer programs and also the tree
Tackling Water Infrastructure and Coastal Challenges in Michigan
Ann Arbor-based CIS was founded in 2013 by Corvias, a Rhode Island-based company that provides infrastructure services to the military, state and local governments, and higher education. In 2023, it was spun off as an independent company whose services center on solving the complicated challenges of outdated and ineffective stormwater infrastructure. SBN Detroit interviewed the company’s CEO, Sanjiv K. Sinha, Ph.D., and Sri Vedachalam, Ph.D., Senior Director of Water Equity and Climate Resilience, about two recent projects – an advisory and research project focused on coastal conservation for The Nature Conservancy, a global conservation nonprofit, and an analysis of Great Lakes Regional Poll (GLRP) data for a binational federal agency. Q: What were the primary goals of the coastal conservation analysis services you provided for The Nature Conservancy? Vedachalam: The main goal of this project was to conduct a comprehensive scoping exercise to identify and understand the key challenges faced by Great Lakes communities in relation to fluctuating water levels, high-energy waves, and climate-induced shoreline erosion. Shoreline erosion in particular is becoming increasingly prevalent due to climate change, and our focus was to assess how these environmental stressors impact both the natural and built environments. By gaining a clearer understanding of these challenges, our goal is to help surrounding communities become more resilient. This involves preparing infrastructure to withstand the ongoing and future effects of these changes. Q: What are the key environmental challenges currently affecting coastal areas in Southeast Michigan and the broader Great Lakes region? Vedachalam: Coastal areas in the Great Lakes region face a variety of interconnected challenges, mainly involving three key components: the lake itself, the shoreline, and the watershed. Rising and fluctuating water levels, coupled with stronger energy waves, contribute to significant shoreline erosion. These forces can disturb lakebed sediments, which, in turn, impact aquatic organisms and their habitats. In addition, increased rainfall—often intense and unpredictable—introduces higher levels of pollutants and contaminants into the lakes, further exacerbating environmental stress. The watershed is also heavily affected by these factors, particularly in terms of increased flooding, which places additional strain on both natural ecosystems and human infrastructure. Addressing these challenges requires a multifaceted approach that combines both natural and engineered infrastructure to mitigate damage and enhance community resilience. Sinha: To add some context, climate change is causing regions around the Great Lakes to experience more rainfall in shorter periods of time, leading to severe issues such as flooding and water quality challenges such as algal bloom in western Lake Erie. The frequency and intensity of these rain events are increasing, which complicates regional water management. As an example of changed rainfall, based on 1992 estimates, a hundred-year storm in Detroit used to be 4.4 inches of rainfall, while in 2019, a similar storm produced 5.2 inches—an additional two billion gallons of water. According to SEMCOG, by 2050, storms of this nature could result in 7.7 inches of rainfall, adding another six billion gallons of water. Preparing communities and infrastructure for such occurrences is essential as we look toward the future. And these massive challenges present an incredible opportunity for the region to grow its economy by deploying capital that leads to local jobs. Q: Based on this project, what specific actions or solutions is CIS proposing to protect Great Lakes coastal communities? Vedachalam: It will take a balanced approach that integrates both hard infrastructure and nature-based solutions to address the complex challenges these coastal communities face. One focus is wetlands, which historically covered vast areas across the Great Lakes region. Over time, urbanization has led to the loss of many of these wetlands, reducing their ability to naturally manage stormwater. So, we need to design infrastructure to help slow down stormwater runoff before it reenters the lakes. Additionally, we need to stabilize dunes and other natural barriers, which play a critical role in protecting the shoreline from erosion and the impacts of fluctuating water levels. These natural elements act as a first line of defense, mitigating the force of incoming water while preserving ecosystems. Another critical area of focus is people. It’s crucial to involve residents in these efforts to ensure that the solutions we propose are compatible with how people live and interact with these spaces. Through collaborative efforts with the community, we can foster a sense of ownership and ensure that the projects we implement meet both environmental and societal needs. Q: What unique opportunities or risks does Southeast Michigan face regarding water management and coastal resilience compared to other areas of the Great Lakes? Vedachalam: Southeast Michigan presents a unique mix of challenges. Historically, this region was rich in biodiversity, with vast expanses of marshes and wetlands serving as natural buffers against flooding and erosion. However, as the area became more urbanized and industrialized, many of these natural systems were altered or lost. Despite this, there remains a kind of “ecosystem memory,” where there is potential to restore these natural practices and processes in some areas. One of the main challenges the region faces is balancing the needs of a highly industrialized and sprawling urban environment with the goal of restoring natural systems. Legacy pollution from past industrial activities continues to pose a risk. There is growing interest from communities to return to more sustainable, nature-based solutions. Q: To this end, what is the importance of polling data in understanding public sentiment on Great Lakes water issues? Vedachalam: Polling data is critical because it allows us to measure public sentiment at a specific point in time and over time. Public sentiment can be dynamic, especially following significant events, much like we see in political polling. Attitudes often shift slowly over time, so conducting annual polls helps track these changes and offers insights into how public perceptions and concerns evolve. Sinha: The Great Lakes represent a highly complex system, involving eight U.S. states and two Canadian provinces. This vast geographic area makes it essential to carefully assess how public sentiment varies across the region. Polling helps identify which stakeholders hold specific concerns and how
The Growing Role of Refill Shops
The concept of refilling containers to reduce plastic waste and promote sustainability is taking hold in many forms. From pop-ups to brick-and-mortar, Refill Shops, known as refilleries, are becoming more prevalent. To find out more about the industry, SBN Detroit interviewed three local business owners: Corey Thompson, founder of Red Oak Refillery with installations in two locations; Jessica Cichowlas, owner of BYOC with brick-and-mortar locations in Ann Arbor and Plymouth, and Ashby Cummings, owner of MI-Fillosophy in Plymouth. Q: Why a refillery? Thompson: The inspiration for Red Oak Refillery came from my time working at Mama Suds, a brand focused on natural household cleaners. By 2021, we were seeing that roughly 30% of Mama Suds’ wholesale sales were directed to refilleries, predominantly on the East and West coasts. This made it clear that there was a need for refill services in other areas as well. I started my business as a pop-up in Oxford in 2021, working part-time with my product set up at a coffee shop in Lake Orion. Setting up my products for a few hours each day gave me the opportunity to fine-tune my model. Instead of going the traditional brick-and-mortar route, I opted for a distributed model with installations in businesses that align with my values. I currently operate in two locations and am preparing to open a third, all while continuing my role at Mama Suds. Cichowlas: I was a customer at BYOC, and the mission of reducing single-use plastic resonated deeply with me. The owner announced she was selling and I took over the two locations – Plymouth and Ann Arbor. My goal remains to uphold that mission, with a focus on sourcing from local family-run businesses that reflect our core values of sustainability and environmental responsibility. Cummings: Mi-Fillosophy launched in February 2023 with a focus on food rather than lifestyle products, which sets us apart from most refill shops. I noticed a significant gap in the market, particularly after many bulk food stores shut down during the pandemic, and I wanted to address that gap by offering consumers a more sustainable way to shop for food. Q: How has the community responded to the concepts of container reuse and the reduction of single-use plastics? Thompson: The community response has been positive. For some, the idea of a refillery is novel and intriguing, though it’s a concept that has been common in places like India for centuries. Others have embraced the concept and seek out refill shops that align with their sustainability goals. Beyond that, the community also has actively sought me out for collaboration. For instance, Orion Oaks Elementary reached out for assistance in achieving certification through the Green Schools Program, and I got invited to speak at various summits and conferences. I think refilleries naturally become hubs for education and sustainable practices within their communities. Cichowlas: The Ann Arbor community has embraced the refill shop a bit faster, I think, because the city has committed to sustainability goals – aiming for carbon neutrality by 2030. So, our store’s mission really resonates there. We’ve seen growing support in Plymouth as well, as more people begin adopting zero-waste practices. Cummings: Customers have responded positively to a refill shop focused on food. Many like the option of purchasing smaller amounts or just what they need, which helps them avoid unnecessary waste. Q: How has your clientele evolved over time? Thompson: Our customer base continues to consist of both repeat visitors and newcomers. Some people actively seek out refill shops as part of their efforts to live more sustainably, while others are discovering the concept for the first time. It’s rewarding to see that growth and interest. Cichowlas: We’ve developed a strong core of repeat customers, most of whom are local. However, we also see people traveling from further distances to stock up on refills, which is a testament I think to more people adopting sustainability practices. Cummings: I’ve drawn customers from all around metro Detroit, but more and more refill shops are opening so people don’t have to drive as far to reach them, which helps from an emissions reduction standpoint and therefore is great. Many people from the local community here have become regulars. Q: What challenges have you faced in operating a refill shop? Thompson: One of the biggest challenges is that this industry is still relatively new, so we’re dealing with the typical obstacles any startup faces. Beyond that, educating the public about the refill concept is a continuous effort. Cichowlas: Our main challenge is keeping our costs competitive with larger chains while maintaining our commitment to sustainability and local sourcing. Cummings: For me, since my focus is food, managing food safety is a challenge. Keeping track of expiration dates and managing recalls. There’s also a need for constant education, particularly around bulk food safety, which some customers are unfamiliar with. Q: What role do refill shops play in educating the community on sustainability? Thompson: Refill shops play a critical role in community education, whether we intended it or not. Customers come to us with questions, and we find ourselves being the ones to provide answers. It’s an organic process — people look to us for guidance. I also think the local refill shops act as an example and a reminder to think more sustainably. Cichowlas: I believe refill shops have an obligation to educate the community. From understanding which ingredients are safe to selecting products that align with sustainable values, we can remove a lot of the guesswork for people and it’s a service that’s important. Zero-waste can seem intimidating, so part of our mission is to make it accessible and achievable for everyone. Cummings: The presence of a refill shop brings sustainability to the forefront of community awareness. Every day, whether it’s answering questions about recycling or helping customers choose eco-friendly products, we’re educating our customers. Q: How do refill shops help reduce the carbon footprint? Thompson: The impact is significant, even with small changes. Just using a container
USGBC: Strategies, Challenges in Designing Environmentally Responsible Buildings
The U.S. Green Building Council (USGBC) is a nonprofit organization dedicated to fostering prosperous, healthy, and resilient communities through sustainable practices. With a focus on shaping the built environment, USGBC believes that buildings and communities can be designed, constructed, and operated in ways that benefit both people and the planet. To this end, USGBC launched the LEED (Leadership in Energy and Environmental Design) certification program in 2000, which is now one of the most widely recognized and used green building rating systems in the world, promoting sustainable building practices and helping to reduce the environmental impact of buildings and communities. SBD Detroit interviewed Lana Crouse, Regional Director U.S. Market Transformation & Development for USGBC, and joining us was Laura Long, who – as a Senior Designer at NORR, a global architecture and engineering firm – offers insights from a design perspective as it relates to Southeast Michigan. Q: What role do buildings play in greenhouse gas emissions? Long: 42% of annual CO2 emissions come from the built environment. 27% of this is from operational carbon, which is the carbon created from operating and maintaining the life of the building. The remaining 15% of CO2 emissions come from embodied carbon, the greenhouse gas emissions emitted from the manufacturing, transportation, installation, maintenance, construction, and disposal of building and infrastructure materials. Crouse: Since buildings account for this significant portion of greenhouse gases and resource depletion, it’s crucial that we design them to minimize resource use such as water and electricity and focus on site selection so that ultimately buildings are healthier for those who inhabit them. By doing so, they do less harm to the environment. When designing and building structures, we can create spaces that also address critical issues like embodied carbon and operational carbon – the issues Laura outlined. Q: What are the biggest trends in green building currently? Long: One major trend is the requirement to track greenhouse gas emissions, which became a prerequisite in LEED 4.0 in March. This means that buildings cannot achieve LEED certification without accounting for these emissions. Another emerging trend is creating a full building lifecycle assessment (LCA) early in the design process. This assessment allows architects to evaluate the environmental impacts of products across their entire lifecycle. LCAs are pushing designers to focus on selecting materials that can reduce both embodied carbon and operational carbon, while also promoting a “cradle-to-cradle” approach to eliminate waste and help encourage manufacturers to develop systems to reclaim products at the end of their lifecycle and reuse them. Crouse: This approach – and LEED Certification – applies to all building types, including homes, communities, and districts. In Southeast Michigan, Royal Oak and Oakland County just certified under the LEED for Cities program, which shows that it’s not just about individual buildings — it’s about creating more sustainable communities where all factors, including utilities and quality of life, are taken into account. Q: How does Michigan’s approach to green building compare to the rest of the country? Crouse: Michigan ranks 20th in the total number of LEED projects among all U.S. states and territories. Progress made in green building across the U.S. is driven by both policies or mandates at the state or local level as well as by the market. While we are seeing market-driven growth in the state, Michigan lacks some of these comprehensive mandates. However, we are seeing some local governments take action. Cities like Ann Arbor and Detroit have started to establish benchmarking ordinances, but we still have opportunities to grow and implement more sustainable building codes. Q: What are the challenges for green building in Southeast Michigan? Long: One challenge is having enough builders and contractors who understand green building practices. Another is that municipalities and local governments need to drive the shift toward more sustainable building codes. While we have champions in the private sector, like Bedrock and the Erb Family Foundation, sustainability often needs to be dictated by governing bodies for widespread adoption. Crouse: A major challenge for design teams is budget constraints. Many owners believe high-efficiency operating systems cost more, and while upfront costs may or may not be higher, they lead to significant savings and environmental benefits over time. Sustainable buildings also improve employee retention and productivity by prioritizing health and well-being through elements like biophilic design and thermal comfort. Q: What are the opportunities for green building in Southeast Michigan? Crouse: Education is key — especially when it comes to helping people understand how sustainable buildings contribute to the health and well-being of those who live and work in them. Cities like Detroit and Ann Arbor are driving these efforts, but we need to reach surrounding areas to continue the push for green building. Q: Are there any standout green building projects in Southeast Michigan? Crouse: Huntington Place in Detroit achieved LEED Gold certification, the first structure of its size in Michigan to do so. It was the first convention center certified through LEED v4.1 in the world. The WPP space (Marquette Building, 243 West Congress, Detroit) is another example, recently renovated and now owned by Bedrock. Q: How do Michigan’s climate and geography affect green building strategies? Long: Michigan’s cool, humid climate and proximity to the Great Lakes present unique challenges. One of the biggest issues we face is managing stormwater to prevent pollution in the Great Lakes. Separating sewer and stormwater systems is crucial to reducing runoff into our water sources. Using LEED and low-impact development strategies, we can manage stormwater more effectively within individual project sites. Crouse: LEED is constantly evolving to meet these challenges. In 2025, we’ll roll out LEED version 5, which will place an even greater emphasis on climate resilience, stormwater management, and designing buildings to withstand extreme weather events. Q: What do you think USGBC’s role will be in the future of green building? Crouse: USGBC will continue to provide guidance to help development teams achieve sustainability and high-performing building goals. Our role is to understand the market and continually push things
Phinia’s Twin Focus: Efficiency Today and a Carbon-Free Future
Based in Auburn Hills, Mich., Phinia (NYSE: PHIN) is a publicly traded company spun off from BorgWarner in July 2023 that is dedicated to advancing sustainable mobility solutions. It specializes in fuel systems, electrical systems, alternative fuel technologies, and aftermarket products, Phinia aims to enhance fuel efficiency, reduce emissions, and help drive the transition to cleaner, low-carbon fuels. SBN Detroit interviewed Todd Anderson, Phinia’s Chief Technology Officer, to explore the implementation of alternative fuel systems and their real-world applications. Q: Phinia has allocated 78% of its research and development to fuel efficiency and alternative fuel technologies and 30% of that to zero- and low-carbon fuel systems. Can you tell us more about this initiative? A: We are committed to driving efficiencies today while moving toward a carbon-neutral and ultimately carbon-free future. It’s important not to focus solely on future technologies when there is a clear need to improve our current energy systems. By allocating 78% of our budget to fuel efficiency and alternative fuel technologies, we are addressing both immediate and long-term needs. This investment allows us to work on improving the systems that our customers currently use and are ordering while also investing in alternative fuels that will help us achieve decarbonization over time. Our funding applies to all aspects of our business. The research and development aspect, mentioned above, but also investing in other business functions, including manufacturing, supply chain, and quality to ensure that as a business we are ready to move forward into a new era. Q: Describe the different alternative fuel systems and what they are used to power today. A: Each of these fuel systems serves specific purposes and applications, providing a range of options for different vehicle types and needs. Advanced Gasoline Direct Injection (GDi) Systems are primarily used to power lighter vehicles, from passenger cars to medium-duty vehicles. Recently, we released a 500-bar GDi system with this higher pressure, designed to improve fuel economy and reduce emissions for passenger cars and light commercial vehicles. Hydrogen fuel cell technology powers electric vehicles (EVs) using an onboard fuel cell that uses hydrogen as fuel. This system is suitable for a range of vehicles, from lighter passenger cars to medium-duty vehicles, and could be particularly efficient for delivery vehicles in controlled environmental settings. Hydrogen Internal Combustion Engine (ICE) technology is well-suited for heavier applications where high loads, continuous operation, and challenging environments are common, such as heavy commercial vehicles and medium commercial vehicles. Hydrogen ICE provides the power and performance expected from traditional diesel or gasoline systems but without harmful emissions to the environment. Q: How is developing technologies for alternative fuels different from working on traditional combustion engines? A: Interestingly, it’s quite similar in many ways. The ways in which we develop liquid fuel systems for gasoline or diesel engines are directly applicable as we move toward alternative fuels. The basic physical principles, such as combustion and fluid metering, remain the same. The difference lies in adapting and refining the elements of these systems to work with alternative fuels. For example, in a hydrogen internal combustion engine, hydrogen gas is injected into the combustion chamber instead of gasoline. While the core technology remains similar, we need materials that can seal and respond appropriately to hydrogen gas, along with some design refinements. Q: What are the main challenges in creating and adopting alternative fuel technologies? A: The technology to use alternative fuels in vehicles is already well understood and has been proven effective. However, the challenge lies in the ecosystem needed to support these fuels. Take hydrogen internal combustion engines (ICE) as an example. While we have vehicles running effectively with this technology, faster market adoption requires sustainable hydrogen production at a scale that isn’t currently available. The infrastructure to deliver this sustainable alternative fuel to the point of use also needs to be in place. Currently, the cost of hydrogen is higher than will be acceptable for a broad market adoption. In my discussions with government officials in the U.S., Europe, and Asia, my call to action has been clear: ensure sufficient production of renewable hydrogen while developing the infrastructure needed to deliver it. This will help reduce costs and support wider adoption. Q: What do you see as the biggest opportunities for growth and innovation in alternative fuels? A: We see significant growth opportunities in the transportation sector, whether in passenger cars or commercial vehicles. In the shorter term, there is substantial interest in commercial vehicles due to their specific operating conditions. For example, there is great potential with captive fleets operating on fixed routes, where we can achieve significant progress without needing to rely on widespread public infrastructure for hydrogen deployment. This allows us to make meaningful advancements in those areas. Additionally, there is interest in alternative fuels beyond just transportation. We’re seeing opportunities in industrial applications, marine sectors, and stationary power generation. Industries like marine shipping, especially large vessels, are actively exploring alternative fuels. So, while there are significant opportunities in transportation, they extend far beyond that sector. Q: How does Phinia work with partners in the alternative fuel industry? Can you share any recent partnerships? A: Partnerships are critical for us — no company can operate as an island. We partner with government bodies such as the U.S. Department of Energy, the Environmental Protection Agency (EPA), the European Commission, and the UK Transport Authority. We also work closely with our customers to support their vehicle roadmaps and align our innovations to meet their needs. We have close partnerships with universities and educational institutions, which provide access to their innovative and advanced thinking while supporting communities and students alike. In addition, collaboration with our supply chain partners is vital. Q: How does Phinia ensure sustainability is integrated into product design and development, particularly with your “Design for Environment” approach? A: Sustainability is critical in the design process. Our design reviews include considerations like the potential for remanufacturing and the end-of-life designation for products, which are vital elements of a circular
Green Goals in Higher Education
In May, Edna Lorenz, PE, CEM, LEED AP, took on the role of Director of the Office of Campus Sustainability at Wayne State University. Previously, she served as the Energy Director at Corewell Health (formerly Beaumont Health), where she led a comprehensive energy and carbon reduction program across 22 hospitals. Before Corewell Health, Lorenz was a senior associate at Environmental Systems Design (now Stantec) in Chicago, managing LEED certification projects, energy audits, and renewable energy analysis. Here, she discusses the role, priorities, and future of sustainability at the university with SBN Detroit. Q: What led you to your current position? A: I am a mechanical engineer by training, having graduated from the University of Michigan. My first job out of college was with an engineering firm where I focused on energy and sustainability consulting for commercial buildings, with a specialization in the LEED green building rating system. In 2016, I took a position as Energy Director for the Beaumont Health System, now Corewell Health. While at Corewell, I found it very rewarding working on the operational side of the built environment, specifically optimizing building performance to reduce the energy consumption and carbon footprint of the hospital system’s 22 campuses. However, I wanted to get back to my green roots. I transitioned to higher education and began my role at Wayne State in May. It’s been fulfilling to work with a larger community, both on campus and within Detroit, who are deeply committed to sustainability. The students in particular are enthusiastic and have high expectations, which is very energizing. Q: What are your top priorities in this new role? A: My primary focus is to operationalize sustainability across the campus. We have a strategic framework, and I want to ensure our approach is practical and achievable for those executing the work. Initially, we are benchmarking current processes to identify what is working well, what isn’t, and where gaps exist. I am also collaborating with the academic side to integrate sustainability into all aspects of university life. Energy reduction is a top priority, and we have a strategic goal to reduce carbon emissions from building operations by at least 50% by 2030. Currently, we’re evaluating our buildings to find opportunities for both operational optimization as well as infrastructure improvement. Additionally, we are enhancing our waste management program by benchmarking current practices and identifying areas for improvement. We’re also focused on landscape and hardscape management to improve stormwater management and increase site permeability. We’re adding more trees and removing or replacing concrete with permeable pavers to achieve this and to enhance the campus’s appeal as a park-like community resource. Q: What strategies is the university implementing to reduce its carbon footprint? A: One great example is our student-run compost program. Our ‘Compost Warriors’ collect pre-consumer food waste — food scraps from food prep on campus — and transport it to the Georgia Street Collective, where it’s processed into nutrient-rich compost. Our grounds crew then uses it to fertilize the landscaping on campus. It’s a closed-loop process that reduces our carbon footprint while supporting a local organization. However, much of our scope 1 and 2 carbon emissions come from energy consumed by our buildings on campus. An example of how we are trying to reduce these emissions includes the installation and enhancement of automated controls for our buildings’ HVAC and electrical systems. By having the most up-to-date automation we can optimize how our buildings operate, from adjusting temperature controls based on outside conditions to turning off equipment when it is not needed. Q: What about recycling on campus? A: We are still working on benchmarking this area and have found it challenging to obtain accurate data due to the size of campus operations. Therefore, one of our first initiatives is to enlist students to help map waste stations around campus so we can chart the flow of waste leaving campus. We are also assessing the different types of waste streams, from hazardous waste from labs to construction waste from building renovations and used sports gear from the athletic department. Our aim is to identify all waste streams and find ways to divert as much as possible from landfills. Finally, we’re also looking at expanding the compost program at the Towers Café, a residential dining hall, with a pilot program this fall to divert post-consumer food waste as well as educate students on reducing overconsumption. Q: How are you addressing stormwater runoff management? A: Stormwater management is a significant issue in Midtown, where urban flooding has occurred. It’s a priority for us and our neighbors to explore ways to reduce runoff and prevent future flooding events. One of our major initiatives is to reduce hardscape and install more bioswales on campus as well as plant more trees and native vegetation. This will help reduce runoff and absorb more water onsite. A couple of examples of the progress we have made include installing permeable pavers on Anthony Wayne Drive in front of the residence hall as well as annual tree planting volunteer events with the Green Warrior student organization and our grounds crew. Q: What are the sustainable practices unique to the urban built environment? A: Being in an urban environment has its advantages. We have access to public transportation, and students and faculty can easily walk or bike to local amenities, which reduces fossil fuel emissions and the immense energy and materials needed to build private vehicles. However, challenges like air quality and urban heat islands also exist, but our campus has over 2,000 trees to help combat these issues, and we’ve been recognized as a Tree Campus by the Arbor Day Foundation, which we are very proud of. Our goal is to serve as a model for urban sustainability for other organizations and institutions of higher education. Q: How are students, faculty, and staff involved in sustainability efforts at Wayne State? A: Students are heavily involved. In addition to the Green Warriors and compost program, we work with our academic partners to identify
Michigan Center for Freshwater Innovation: Tackling Michigan’s Water Challenges
The Michigan Center for Freshwater Innovation (MCFI) was created through a partnership between the University of Michigan, Michigan State University, and Wayne State University to address diverse freshwater challenges in Southeast Michigan and across the state. Recent initiatives include developing nature-based solutions, promoting regional water planning, and improving stormwater infrastructure in Southeast Michigan, aiming to position the state as a leader in freshwater innovation and economic growth. SBND spoke with Curt Wolf, managing director at the University of Michigan Urban Collaboratory and managing director of MCFI about its projects, challenges, and vision. Q: What inspired the creation of the Michigan Center for Freshwater Innovation, and how did it come about? A: The Michigan Center for Freshwater Innovation was conceived through a collaborative effort led by the University of Michigan, Michigan State University, and Wayne State University. This initiative aims to tackle Michigan’s freshwater challenges, which vary widely across the state—from excessive water and flooding in some areas to contamination threats and inadequate supplies in others. The MCFI was established to address these complex and diverse issues through a coordinated approach involving multiple stakeholders, including water utilities, community groups, NGOs, practitioners, and state agencies. It is also a way for these institutions to work together to give something back to the great State of Michigan. Q: Is this collaborative approach among institutions unique? A: It is somewhat unique. While there have been various attempts to address water issues in Michigan, the MCFI represents a significant step forward by bringing together an inclusive group of leading academic institutions and regional water stakeholders who can collectively implement real change and bring new and innovative solutions forward. The MCFI’s focus is the entire state of Michigan which has very rural areas but also a number of large cities. The three universities complement each other well as a team. UM is an internationally recognized research institution with often a global focus, MSU is a land grant university with incredible reach throughout the state through its extension network. Wayne State has more of an urban focus with important community ties. All three universities have amazing water research capabilities. The MCFI is much greater than just an academic collaboration, however. Creating an open table where all stakeholders have a voice is critical to solving the types of water problems we’re facing as a region. Q: What are some current projects the MCFI is working on? A: The MCFI is actively involved in several projects. One major focus is climate adaptation and regional resiliency, particularly addressing the impacts of catastrophic flooding, such as the 2021 events that affected thousands of homes in SE Michigan. The center is working on near-term solutions and leveraging regional cooperation to look at how we might enhance infrastructure, think outside the box, and address water stressors. One such project, funded by the Erb Family Foundation, is a groundbreaking project that aims to revolutionize stormwater management in Southeast Michigan. The team will identify barriers to regional stormwater cooperation and develop innovative solutions to better manage the impacts of extreme rain events and climate variability. By focusing on the Great Lakes Water Authority (GLWA) wastewater service area in Wayne, Oakland, and Macomb counties, the project seeks to optimize existing water infrastructure assets through regional coordination. This approach could potentially save hundreds of millions of dollars in capital investment and operational costs while improving flood control and water quality in major watersheds. The project involves extensive collaboration with local authorities, community engagement, and the exploration of successful regional stormwater cooperation models from other areas. The findings could pave the way for more efficient and cost-effective stormwater management strategies, benefiting both the environment and residents of SE Michigan. Another project, funded by the National Fish and Wildlife Foundation (NFWF), seeks to integrate large-scale Nature-Based (green) Solutions (NBS) with existing infrastructure (gray) to mitigate flooding and enhance ecological resilience. This project will develop a comprehensive strategy for the adaption of NBS on a regional scale leveraging land assets for water storage, restoring habitats, and promoting climate justice. By engaging local stakeholders and employing advanced modeling techniques, the project aims to develop a scalable and transferable framework for sustainable stormwater management. This effort is expected to improve community resilience, protect critical infrastructure, and provide significant benefits to fish and wildlife habitats, while also fostering socio-economic growth through enhanced property values and reduced flood insurance costs. Additionally, MCFI completed a project for the State of Michigan providing recommendations for promoting regional planning of water infrastructure throughout the state. The study, commissioned by the Michigan Department of Environment, Great Lakes, and Energy (EGLE), identified opportunities for shared services, incentives for cooperation, and barriers that prevent public water supplies from serving areas outside their current boundaries. The research team conducted interviews, roundtable discussions, and technical analyses to gather insights from water system managers, local officials, and other stakeholders across the state. Findings and recommendations provided informed EGLE’s efforts to ensure equitable water infrastructure investments that provide high-quality drinking water at the lowest cost, in line with Governor Whitmer’s 2021 executive directive on safe drinking water. Q: What are the main water stressors facing the region? A: The region faces multiple water stressors, including aging infrastructure, climate change impacts, legacy industrial contamination, emerging contaminants (PFAS, microplastics, etc.), and regional growth impacts. Climate change is impacting Michigan in different ways than other parts of the country such as the Southwest. We are experiencing increased precipitation with more intense and sometimes highly localized storms. We have more water to manage than ever before. The region’s water systems, some of which are nearly 150 years old, were developed incrementally over time, adding to the complexity of addressing modern challenges. At the same time, there are portions of the state where groundwater resources are stressed, particularly in central areas of the state. Michiganders sometimes feel that we have unlimited water sources and that isn’t always the case. Q: What are the barriers to improving water management, and how can they be overcome? A: There are a
ITC Holdings and Its Role in a Greener Grid
Founded in 2003 and headquartered in Novi, Mich., ITC Holdings builds, operates, and maintains high-voltage electric transmission systems that carry electricity in Michigan and around the Midwest. The company owns and operates approximately 16,000 circuit miles of transmission lines across 90,000 square miles of service territory. SBN Detroit interviewed Simon Whitelocke, senior vice president and chief business officer to find out more. Q: How does ITC approach sustainability? A: We are central to a broader sustainability initiative aimed at decarbonizing the electrical grid, facilitating the shift by interconnecting greener electricity, even though we don’t generate it ourselves. When building transmission infrastructure, we are highly mindful of our environmental impact. Our transmission lines, which have a lifespan of sixty to seventy years, traverse both urban and rural areas. We strive to be good neighbors to the environment, habitats, and wildlife around them. Before starting a transmission project, we conduct an environmental assessment to determine the best route, the type of land it will occupy, and potential impacts on sensitive habitats or endangered species. We also carefully plan the construction timing to minimize its environmental impact. Q: How has ITC evolved over time when it comes to sustainability? A: From day one, ITC has prioritized being mindful of our impact, making environmental responsibility a core part of our company culture. As we’ve expanded into diverse geographies and worked in various environments, our commitment has deepened. Our repertoire and tools have grown and adapted over time, leading to enhanced and improved expertise. Q: How has the infrastructure evolved, and what are the solutions for building toward sustainability? A: We operate with significant oversight, often collaborating with federal, state, and local governments, which provide a framework of standards. Cities and states have developed sustainability plans that we work within. For example, Michigan has the MI Healthy Climate Plan, and we align our efforts with it. The public is also more aware and engaged, and there is much greater support for sustainability initiatives today. Q: How does your work vary from state to state when it comes to dealing with habitat and environment? A: Every state presents unique challenges and regulates environmental matters differently, so it’s certainly not a one-size-fits-all approach. At the federal level, there are baseline protections for certain species that apply nationwide, but some states have additional protections for species-specific to their region. For instance, Michigan is unique due to its extensive wetlands. Compared to Iowa, which has fewer trees and less water, Michigan presents a totally different set of environmental factors. These variations create a lot of state-to-state differences in our work. We collaborate with local and federal governments on mitigation plans to ensure our impact on the environment is as minimal as possible. What are the biggest challenges that you encounter in managing habitat around building and maintaining infrastructure, and what are the lessons you have learned along the way? A: ITC takes great care to protect the environment and habitats surrounding our infrastructure, but the most challenging item we have encountered is invasive species. To counter this, we employ adaptive management techniques, meaning, that once we plant something, we don’t just walk away from it. We consult with biologists to regularly monitor those areas to control, and remediate, any invasive issues that may arise. Q: How do you handle materials and recycling? A: We partner with Goodwill Greenworks, among other recyclers, to recycle our construction material. As we replace infrastructure the old materials such as wires, cables, and metal copper steel go to them, versus a landfill. Goodwill Greenworks also creates job opportunities and supports community development by training individuals in green jobs and environmental management. When we decommission old equipment, such as batteries at substations, we ensure that these materials are properly recycled. This includes recycling oil, metals, and other components with the help of our experts. We send concrete structures used as foundations for equipment to recyclers that crush and reuse it as aggregate, or to produce new concrete. Similarly, untreated wood, such as old pallets or shipping crates is recycled into mulch or used as fuel for co-generation. Also, old wooden poles are often donated to landowners versus having to be disposed of in a landfill. Overall, we are increasingly focused on recycling and being mindful of our environmental impact. Q: How does ITC incorporate sustainability into its operations beyond infrastructure and recycling? A: In 2022 we received a Gold Tier Program Award for our efforts at our Novi headquarters and we’ve been awarded several Conservation Certifications from the Wildlife Habitat Council. I think this demonstrates our commitment to environmental stewardship. The property the campus sits on includes significant wetland areas, and we are highly sensitive to maintaining and protecting these natural spaces. This approach extends to our transmission corridors and warehouses, where we prioritize living in harmony with the environment. The 2003 blackout was ultimately triggered by a power line coming in contact with a tree, so we are particularly mindful of managing vegetation under our power lines. When we remove trees, we have replaced them with habitats such as prairies that support local species and pollinators. This reflects our focus on sustainable land management practices. Additionally, many of our transmission corridors are integrated with walking and biking trails, allowing people to connect with nature while ensuring the reliable delivery of electricity. We strive to balance the need for power with the importance of preserving green spaces. Be sure to subscribe to our newsletter for regular updates on sustainable business practices in and around Detroit.
Green Door Initiative: Fostering Sustainability and Economic Growth
Founded in 2010 by native Detroiter Donele Wilkins, the Green Door Initiative is a Detroit-based nonprofit dedicated to advancing sustainability and environmental stewardship. It emphasizes developing green spaces, revitalizing urban areas, empowering communities, and workforce development tailored to the green energy sector. In March, Wilkins was appointed to serve on the White House Environmental Justice Advisory Council established by President Biden under Executive Order 14008 of January 27, 2021, to tackle the climate crisis here and around the world. SBN Detroit interviewed Wilkins about the vision and the progression of the Green Door Initiative and how serving on the advisory council will impact its trajectory. Q: What is the impetus behind the Green Door Initiative? A: The Green Door Initiative is an environmental justice nonprofit organization based in Detroit. Our mission is to ensure that everyone, regardless of race or ZIP code, is environmentally literate and capable of promoting and living a sustainable lifestyle. We achieve this through several programs and initiatives. First, we offer community education and access to resources – opportunities for residents and community members to learn about environmental protection and improve their daily lives. Through workshops and awareness programs, we translate complex information into actionable steps, helping individuals access resources to enhance their environmental conditions. Another big focus of ours is workforce development. Here, we focus on increasing the capacity of residents to compete in the environmental and green sectors. Our 12-week training program has a 92% job placement rate, offering underrepresented and underserved individuals opportunities to become certified and licensed for well-paying, family-supporting jobs. This program covers various environmental and green-collar jobs, addressing climate change, pollution removal, and more. We also engage youth in this program. Every summer, we employ high school students to support their transition into leadership roles and career planning. And finally, we work to impact public policy related to environmental health, advocating for equal protection to mitigate issues such as poor air quality, and unsafe drinking water. We advocate for investments and resources that mitigate climate impacts, ensuring that our communities are heard in decision-making processes and receive the necessary support. Q: What types of jobs does your workforce development program help people secure? A: We train individuals for diverse careers in the environmental and green sectors. We specialize in placing certified professionals in roles related to environmental cleanup, including handling hazardous materials and addressing pollution. We also support job placement in energy audits and solar installation, helping individuals improve energy efficiency and contribute to renewable energy projects. Additionally, we facilitate apprenticeships, particularly in electrical fields linked to green energy. Our network extends to disaster response roles, where individuals assist with emergency food and water distribution, and to various general green sector positions. We continuously seek out potential career opportunities in the environmental field. Q: What other initiatives are you pursuing in workforce development? A: We’re actively involved in several projects related to workforce development. One major initiative is our Air Quality Management Project, which we started with funding from the EPA. This involves installing air monitoring systems and collecting real-time data to share with the community. We are also focused on community outreach, training residents on the significance and use of this data. Additionally, we’ve created job opportunities through our training programs. Several participants have been hired for internships and full-time positions as air monitor installers. We’ve also partnered with Just Air, a for-profit company, to fulfill a contract with Wayne County for installing 100 air monitors. This collaboration allowed us to employ our trainees and demonstrate our capability to meet local needs. Q: What is the economic impact of green jobs? A: It’s huge. These roles are among the fastest-growing job trends that exist today, and they significantly benefit local economies. Green jobs contribute to environmental restoration and adaptation, aiding communities in recovering from storms and other environmental challenges. As the shift toward electric vehicles and related infrastructure accelerates, more job opportunities arise, creating synergy with the auto industry. Our 12-week program trains several cohorts of 25-30 individuals quarterly, offering comprehensive education in environmental and green-collar sectors. This training spans various fields, including solar installation, and prepares participants for diverse opportunities, benefiting both large and small contractors. To date, we’ve graduated 1,700 individuals from our program. Q: Does Green Door focus on manufacturing jobs, given the industry’s significance in Detroit? A: Yes, we do engage with manufacturing jobs, including those related to solar panel assembly. For example, we’ve partnered with companies involved in solar panel manufacturing and installation. We’ve also established a company – 313 Solar – that is not yet launched, which will aim to handle the full spectrum of solar panel operations, from manufacturing to maintenance. We’re actively collaborating with companies planning to set up in Wayne County and working with the Department of Economic Development and other partners. These companies often seek grants and will recruit from our trained workforce, ensuring alignment with industry needs and sustainability goals. Q: Can you expand on the community education you offer and its impact on Southeast Michigan? A: We’ve provided approximately 25,000 hours of community awareness training. Our focus includes educating people on navigating permit hearings and understanding environmental protection at local, state, and federal levels. We cover environmental health impacts, such as the effects of poor air quality on health. We also address misconceptions, such as victims being blamed for their health issues due to lifestyle choices like poor diet or smoking. We engage in discussions about food deserts and other systemic issues, aiming to shift the trajectory by proactively influencing development and policy changes. Q: What impact do you have on local businesses? A: We help local businesses access talent they might not have considered. Many companies struggle to fill positions or find the right skill set, and we provide solutions by presenting qualified candidates. Businesses are often surprised by the high quality of the individuals we connect them with. We encourage businesses to reach out and have a conversation with us. Our team of job developers