How Sesame Solar is Aiming to Build a Mobile Clean Energy Future

Sesame Solar, based in Jackson, Michigan, is pioneering a new model for clean, mobile power. The company’s self-generating “nanogrids” — compact, solar- and hydrogen-powered units that deploy in minutes — are designed to deliver renewable electricity anywhere it’s needed. From emergency response and telecom operations to defense and community resilience, the technology provides an alternative to the diesel generators that have long powered temporary and remote sites. SBN Detroit interviewed co-founder Lauren Flanagan about redefining energy resilience, the challenges of scaling clean power, and why Michigan is the right place to lead this transformation. Q: Tell me about Sesame Solar — what inspired it, and how did it begin? A: After Hurricane Katrina, it hit me that extreme weather was becoming more frequent and more severe. And it was clear that government alone couldn’t handle the response. Every time disaster struck, I saw diesel generators being deployed to restore power, even though they caused massive environmental damage and logistical problems. That was the “aha” moment. I wanted to create a clean, mobile, self-generating power solution that could replace diesel. Q: How did that vision turn into the nanogrid model you use today? A: We realized that to change behavior, we had to make the better solution easier — something that could be deployed quickly, run cleanly, and adapt to different uses. We created a model that is modular and scalable, like Lego blocks. The nanogrids can power emergency offices, communications systems, field kitchens, drone refueling stations and more. The first units were deployed in the Caribbean after Hurricane Maria (2017), and they’re still operating today. From there, we’ve expanded across the U.S. — our systems are used by cities from Ann Arbor to Santa Barbara, and by telecom companies like Comcast, Cox, and Charter. Q: What kinds of situations demonstrate the greatest need for deployable clean power? A: Disaster recovery is one, of course, but our nanogrids are also being used anywhere grid power is unreliable or unavailable. The Air Force and the Army Corps of Engineers use them for unmanned operations, including surveillance and communications. We’ve also developed hydrogen-powered drone refueling stations with partners like Heven Aerotech. We’re seeing use cases across emergency management, defense, telecommunications, and community resilience — really, any situation where people need dependable, sustainable power quickly. Q: What challenges come with making energy both mobile and self-generating? A: It’s hard. To make something that sets up in 15 minutes and runs off solar and hydrogen, you need deep integration between hardware, software, and automation. We hold multiple patents, and our engineering team has solved challenges around rapid deployment, autonomous energy management, and safety. Every component — from insulation and vapor barriers to passive energy systems — contributes to efficiency. We have a unit deployed with the Army Corps of Engineers that’s been running unmanned for nearly a year with zero downtime. Imagine if a diesel-powered generator was running for that long. And maintenance of the unit consists of blowing sand off the panels twice a year because it’s located in the desert. That’s the level of reliability we’re aiming for. Q: How do you measure the environmental benefits compared to diesel generators? A: We quantify it in CO₂ savings. Our software platform tracks every kilowatt generated and consumed, calculating gallons of diesel avoided and total emissions saved in real time. It’s data our customers can use to validate their sustainability goals. Beyond emissions, diesel generators are noisy, polluting, and often dependent on supply chains that fail during crises. A self-sustaining nanogrid avoids all of that. Q: You moved the company from California to Michigan. Why build here? A: Honestly, I wouldn’t have opened this business in California. Michigan offers lower operating costs, a strong manufacturing base, and deep expertise in mobility and electrification — all areas that align with our long-term vision to make nanogrids more automated. The state has a world-class supply chain. We buy from companies like Alro Steel, we hire engineers locally, and we also source as locally as possible. I like to say we take a farm-to-table approach to manufacturing: how much can we build right here in Michigan? Q: What opportunities does this create for Michigan’s workforce and suppliers? A: We’re growing quickly — we have 23 employees and are hiring more technicians now. The roles require multidisciplinary skills like fabrication, welding, mechanical, and electrical. Increasingly, there are opportunities for advanced computer-assisted and AI-driven roles too. Michigan’s existing fabrication and automotive supply chain is a huge advantage. As that sector transitions toward electrification, it’s opening new opportunities for clean-tech manufacturing to scale. Q: What does the next decade look like as extreme weather becomes more frequent and the energy transition accelerates? A: It’s predicted that we’ll see a significant number of billion-dollar weather events in the next five or six years. Even as we make progress in slowing climate change, we’ll still need to adapt. That’s where mobile, renewably powered systems can come in. They bridge the gap between infrastructure and immediacy — bringing clean energy wherever it’s needed. I’m an optimist. I believe the technology exists to stabilize the climate, but it won’t get easier before it gets better. At Sesame Solar, our mission has always been about people, planet, and profit. It sounds a bit fluffy, but we are working to help communities, companies, and governments prepare for the future — not just by responding to disasters, but by rethinking how we power the world in the first place.   Be sure to subscribe to our newsletter for regular updates on sustainable business practices in and around Detroit.