Working to Expand Food Waste Composting in Michigan

Spurt Industries is a Wixom-based composting facility and the only EGLE-registered site in Macomb, Wayne, and Oakland counties producing STA Certified Compost, which is the Seal of Testing Assurance from the U.S. Composting Council. The company focuses on transforming food waste into high-quality compost products, working with a wide range of partners to divert waste from landfills and support healthier soils across Southeast Michigan. Through these efforts they consistently divert 15 million pounds of food waste from landfills annually. SBN Detroit interviewed Bill Whitley Jr., Owner and General Manager, and Adriana Whitley, Sales and Marketing Director, about the company’s origin, how compost is created and classified, and the importance of expanding food waste programs. Q: What inspired the founding of Spurt Industries, and how has the company’s mission evolved since its inception? A: Spurt Industries was founded in 1994, coinciding with Michigan’s yard waste ban, which required that yard waste be composted instead of landfilled. That legislation sparked the emergence of commercial composting operations in the state, including Spurt’s original facility in Grand Rapids. In 2008, a previous owner had opened a site in Wixom. We acquired the business in 2016 and have been operating fully out of that location. In Marc, we took over the SOCRRA Composting Yard in Rochester Hills, giving us two locations with roughly equal volume. This will allow us to process approximately 200,000 cubic yards of organics annually, making Spurt one of the largest composters in Michigan. Q: What does it mean to be an EGLE-registered composting facility? A: The previous process to become registered was as simple as submitting a one-page form and fee, but the state passed new solid waste laws about two years ago with new regulations. Now, the requirements are much more robust and we’re fully supportive of that shift. To operate a commercial composting site, facilities must now obtain a general permit and develop detailed documentation, including operational, fire safety and training plans, and more. We also post a $20,000 bond with the state. These measures ensure that composting is done responsibly and consistently across operators. We were involved in lobbying for these changes because we want a level playing field where materials are managed safely and sustainably. Q: What is the significance of being the only facility in Macomb, Wayne, and Oakland counties producing STA Certified Compost? A: The STA Certification is administered by the U.S. Composting Council and is one of the most rigorous compost quality programs in the country. Only four facilities in Michigan currently hold this certification, and we’re proud to be one of them. The certification process includes documenting all input materials, monitoring every compost pile weekly for temperature, moisture, and density, and conducting rigorous lab testing on finished compost. That includes testing for nutrients, metals, and pathogens, and running plant growth trials. This high standard has enabled us to sell compost to certified organic farms – and most importantly, we produce a clean product, free of plastic, glass, or metal contamination. That’s core to our mission. Q: What distinguishes different grades of compost, and how are they managed? A: Several factors influence compost quality: Feedstock: The materials used to make the compost matter. Incorporating food waste alongside yard waste increases nutrient value and mimics natural decomposition processes. Contamination and Pathogen Control: Compost must be free of contaminants and turned regularly to kill pathogens. Otherwise, it won’t meet quality standards. Chemical Maturity: Compost must be fully matured. “Hot compost” that hasn’t cured properly won’t support plant growth. Screening Method: Screen the product to remove oversized or undecomposed material. The finer the screening, the more refined the compost. Beyond quality, we’re also mission-driven to expand food waste composting. Yard waste is mandated by law, but food waste is not – and yet, Michigan sends 1.5 to 2 million tons of food waste to landfills annually. That’s a missed opportunity for soil and water quality improvement. When we apply compost to soil, it increases water absorption by about 100 gallons per cubic yard. That means less runoff, less strain on sewer systems, and fewer sewage overflows into our lakes, which is critical for protecting Michigan’s economy and tourism industry. Q: What has been the reaction from local businesses? Have you seen more interest in food waste recycling of late? A: Absolutely. While COVID-19 significantly disrupted commercial food waste collection – dropping volume by over 90% – we’ve since seen a steady rebound. We now see meaningful enthusiasm from businesses and strong policy support from the state. Michigan has a goal to cut food waste in half by 2030, and EGLE is developing a statewide roadmap that includes composting as a key strategy. Q: How does composting help mitigate climate change and support the environment? A: There are two major benefits: Methane Reduction: Food waste in landfills produces methane – a potent greenhouse gas. Composting food waste in an aerobic (oxygen-rich) environment prevents this. Carbon Sequestration and Soil Health: Compost improves soil quality and reduces the need for synthetic fertilizers, which often require long-distance transport and carry environmental costs. Applying compost also helps sequester carbon in the soil. It’s a win-win for climate and community. Q: Are there untapped opportunities for food waste diversion and composting in Southeast Michigan? A: Yes. There’s a long list. Only a few communities offer food scrap drop-off programs, and even fewer allow food and yard waste to be co-mingled. Less than 1% of restaurants and schools are currently composting, and yet these sectors produce massive amounts of food waste. We believe every business should be composting. We have found that when restaurants begin composting, they become more aware of their overall food waste and often change behavior, improving efficiency and reducing waste overall. Grocers like Meijer and Walmart have made meaningful progress in composting, but there’s still significant untapped potential for other businesses and municipalities to follow suit. Q: What are the biggest barriers to business adoption? A: Cost is one. The other is what we call the “ick factor.” Businesses

Rethinking Water in a Changing Climate

Ann Arbor, Michigan-based LimnoTech is an environmental science and engineering firm with more than 50 years of experience with water-related issues. The firm works with public agencies, private industry, and nonprofit organizations to provide science-driven solutions to complex water challenges. SBN Detroit interviewed Brendan Cousino, PE, Principal and Senior Civil & Environmental Engineer at LimnoTech, to discuss the region’s most pressing water infrastructure challenges and where he sees the biggest opportunities for improvement. Q: What is the impetus behind LimnoTech? A: LimnoTech was founded by graduate students at the University of Michigan over 50 years ago. At the time, the country was just beginning to grapple with water pollution and how to treat contaminated waterways. This was also the early age of computing, and the founders began using computer-based modeling to better understand and solve environmental problems. Essentially, they were a crack team of water quality modeling experts who turned their research into a business that provides real-world environmental solutions. Q: With increasing climate variability, how do you approach designing water management solutions that are both adaptable and future-proof? A: To be future-proof, everything must be adaptable. We’re facing longer drought periods and increasingly intense rainfall events – sometimes in very short time frames. These extremes are becoming more common, and we’ve seen the consequences play out across Michigan. Our approach is to stay aligned with the latest climate science, evaluate the full range of projected conditions, and design infrastructure that can perform under both extremes. Q: What are some of the most pressing water-related challenges facing Southeast Michigan today, and how do they compare to other regions? A: Southeast Michigan is dealing with aging infrastructure systems that were built for historical conditions – not today’s climate realities. The recent Great Lakes Water Authority pipe break in Southwest Detroit is one example. Urban flooding and stormwater management are key issues, as is legacy pollution from our industrial past, compounded by new threats like microplastics, and PFAS. At the same time, Michigan is unique in its abundance of freshwater, much of it in relatively clean condition. That puts a responsibility on all of us to protect these globally significant resources. Q: Conversely, what are the biggest opportunities in Southeast Michigan for improvement and is there any low-hanging fruit? A: In many ways, we’ve already picked the low-hanging fruit. For example, our region has been ahead of the curve when it comes to combined sewer overflow treatment. Investments made in the ’90s and early 2000s, such as retention basins and treatment systems, have made a real difference in improving water quality in the region. Many of the pollutant sources in our stormwater are more broadly distributed. What’s next is being more strategic to plan infrastructure investment. We’re using better data and technology to monitor conditions. For example, we can now use robotics to inspect pipes so we don’t have to wait for them to fail, and real-time monitoring to inform operations during wet weather. That allows us to make smarter, targeted investments to prepare for changing conditions. Q: What innovative strategies or technologies are emerging to help cities like Detroit handle extreme weather events and stormwater management? A: Big data and real-time system operations are making a huge difference. With improved forecasting, operators can anticipate where rainfall is headed and adjust pump systems and treatment infrastructure in advance. We’re also using high-resolution 2D modeling to understand where water will accumulate during storms. That allows us to plan better and pinpoint risk areas. It’s transforming how we manage and design urban stormwater systems. Q: You worked extensively on the Ralph C. Wilson, Jr. Centennial Park on the Detroit riverfront. What specific water-related challenges did this project address, and how does it serve as a model for future waterfront development? A: The site had a number of infrastructure issues. There was legacy sediment contamination from industrial activity that had to be remediated to support a healthy aquatic ecosystem. The bulkheads along the river also were failing, creating dangerous sinkholes. We replaced those with new shoreline stabilization measures. We also incorporated aquatic habitat restoration into the project. The result is a world-class park that improves the riverfront for people while also addressing serious environmental concerns. It’s a great example of how community projects and infrastructure improvements can work hand in hand. Q: Infrastructure in Detroit is aging and often not designed for today’s environmental pressures. What are the biggest gaps in water infrastructure that need to be addressed, and what solutions exist? A: Much of the infrastructure was designed for storm conditions that were expected to occur once every 10 years. Now we’re seeing those types of storms almost every year, at least in some locations within the region. Our stormwater systems simply weren’t built to handle that level of intensity and frequency. The biggest gap is funding. Many systems are at or beyond their design life, but utilities don’t have the financial resources to replace them quickly. We need to identify failure points, understand what’s most vulnerable, and prioritize investment accordingly. Q: What role do community engagement and education play in developing effective climate resilience projects? A: Community engagement is a core part of most projects we work on. It’s essential that the infrastructure improvements we make actually serve the people who live there. When communities have a voice in the design process, the outcomes are better. Education also is key. Whether it’s installing a rain barrel, planting native species, or simply understanding how the stormwater system works, individual actions can add up. If we can manage even the first half inch of rainfall before it enters the storm system, we reduce the reliance on aging infrastructure. Q: Looking ahead, what do you see as the biggest opportunities for improving climate resilience and sustainable water management in the next decade? A: One major opportunity is the shift we’re seeing from purely regulatory compliance to voluntary corporate action. Many of our corporate clients are taking the initiative to reduce their water impacts. That’s a

Commercial Fleet Vehicle’s Evolution to Electrification

Bollinger Motors is an electric vehicle manufacturer focused on Class 4 and Class 5 trucks. Founded in 2015, the company initially set out to develop off-road electric vehicles but later pivoted to commercial fleet electrification, seeing a gap in the medium-duty truck market. Now headquartered in Oak Park, Michigan, Bollinger is majority-owned by California-based Mullen Automotive (Nasdaq: MULN). SBN Detroit interviewed Jim Connelly, the company’s Chief Revenue Officer, to discuss the challenges and opportunities within the Class 4 and Class 5 electric truck market, the considerations driving fleet electrification, and the broader implications for sustainability and economic growth in the region. Q: How did Bollinger Motors get started, and what led the company into the Class 4 and 5 truck market? A: Robert Bollinger founded Bollinger Motors in 2015 in upstate New York with the goal of developing a rugged, off-road vehicle for his farm that didn’t rely on gas. He and a small team of engineers started experimenting in his garage. As things progressed, Robert saw a gap in the commercial truck space – there were virtually no electric options in the Class 4, 5, and 6 segments. With government incentives accelerating EV adoption, the opportunity to focus on the commercial market became clear. Bollinger moved operations to Oak Park in 2017, tapping into the automotive engineering and manufacturing expertise in Detroit. Q: What is the driving force behind the development of Class 4 and 5 trucks, and how does this market function? A: The commercial vehicle sector has been expanding rapidly, particularly with the rise of last-mile delivery services and the increasing demand for residential delivery. Class 4 and 5 trucks are utilized across several industries, including landscaping, telecommunications, and delivery services. These versatile vehicles play a key role in urban and regional transportation. Electrification makes perfect sense for this market. Most Class 4 and 5 vehicles operate locally, returning to a central depot each evening, which simplifies charging logistics. The predictable routes and relatively moderate daily mileage make them ideal candidates for EV adoption. Q: What are the main factors driving businesses to transition to electric trucks at this size? A: Sustainability goals are a major motivator. Large corporations are looking to reduce their carbon footprint, and transitioning their fleets from gas and diesel to electric clearly aligns with their environmental objectives. Cost savings are a key factor as well. Fuel economy improvements, lower maintenance costs, and federal and state incentives make electric fleet adoption financially appealing. Since these vehicles are driven extensively, reducing fuel costs and minimizing maintenance expenses significantly lower the total cost of ownership over time. Q: What are the biggest challenges and opportunities in establishing EV adoption in this segment? The biggest challenge is infrastructure development. Companies need to build charging infrastructure to support EV fleets, which can be a major hurdle. Another challenge is driver familiarity. Drivers are used to gas and diesel vehicles, so transitioning to EVs can be disruptive. We intentionally designed the truck’s cab and controls to be similar to traditional vehicles. When it comes to opportunities, the market is wide open. Q: How does Bollinger’s partnership with EO Charging support fleet electrification? A: While many companies are eager to transition to electric fleets, most fleet managers have spent their careers managing gas and diesel vehicles. The shift to EVs requires new knowledge about charging infrastructure, vehicle compatibility, and grid capacity – areas that can cause angst. EO Charging provides end-to-end solutions, assessing customers’ facilities, infrastructure, and utility needs. They work alongside us to ensure that everything is in place – from hardware installation to liaising with utility companies – so businesses can confidently move forward with EV adoption. Q: What has the response from fleet operators been since Bollinger launched sales last fall? A: The response has been very positive. At the recent NTEA Work Truck Show, we participated in ride-and-drive events, where industry leaders and fleet managers had the opportunity to test our vehicles. Many have since expressed strong interest in long-term test drives, which we are now scheduling. We’ve also established a growing dealer network, with over 50 locations nationwide and are continuing to expand. Discussions with additional dealer groups indicate that demand for electric commercial trucks is rising steadily. Q: How do these trucks compare to diesel alternatives in cost and emissions? A: The total cost of ownership varies depending on several factors, including miles driven, fuel prices, vehicle lifespan, and upfitting requirements. We use a tool developed by Argonne National Laboratory at the University of Chicago, which allows businesses to calculate the payback period and emissions reductions for their specific use case. While EVs have a higher upfront cost, they become more cost-effective over time due to fuel savings, reduced maintenance, and substantial government incentives. Speaking of incentives, the federal government offers a $40,000 tax credit for Class 4 EVs under the Inflation Reduction Act. Certain states, such as California, provide additional incentives of up to $60,000 per vehicle, meaning businesses can receive up to $100,000 in incentives per truck. These incentives make early EV adoption much more financially viable. Many states now offer additional grants and rebates as well. We have a dedicated team that helps customers navigate these incentives, ensuring they maximize available savings. Q: What role does Bollinger’s Michigan headquarters play in the future of EV truck production? A: Robert Bollinger always knew that to scale, he needed to be in Detroit – the automotive capital of the world. Southeast Michigan provides access to a highly skilled workforce, manufacturing expertise, and a network of suppliers and engineers that is unmatched anywhere else in the country. We see ourselves as more than just an EV company – we are an automotive company. Being headquartered in Michigan allows us to merge cutting-edge technology with traditional automotive craftsmanship, ensuring we produce world-class electric trucks that meet the needs of commercial fleets today and into the future.   Be sure to subscribe to our newsletter for regular updates on sustainable business practices in and around Detroit.

Urban Farming in Detroit

Planted Detroit is a vertical farming company located in the heart of the city, dedicated to redefining the way fresh produce is grown and distributed. By leveraging Controlled Environment Agriculture (CEA) and a commitment to biosecurity, the company focuses on producing high-quality greens year-round while minimizing environmental impact. Its model aims to ensure fresher, longer-lasting food while reducing the carbon footprint associated with traditional farming and long-distance transportation. SBN Detroit interviewed CEO and founder Tom Adamczyk to discuss the company’s sustainability efforts, how vertical farming plays a role in reshaping the food system, and what this means for businesses and consumers in Southeast Michigan. Q: Your background is in finance – what prompted the shift to develop Planted Detroit? A: Yes, my background is in capital markets and finance, particularly mergers, acquisitions, and investment management. Part of that work involved identifying emerging technologies and investment opportunities, with a specific focus on agriculture and sustainability. Through this research, I began looking at broader issues within the food supply chain and seeing systemic issues. Consumers are often paying higher prices for food that is lower in quality, and much of that is due to inefficiencies in how food is grown, transported, and distributed. A significant portion of fresh produce travels thousands of miles before reaching grocery stores, which impacts its nutritional value and shelf life while increasing costs and environmental impact. In 2016–2017, I started researching alternative agricultural models, including controlled environment agriculture. Vertical farming stood out as a viable approach to addressing these challenges. Rather than just investing in the sector, I wanted to fully understand how to make vertical farming both sustainable and economically viable – and be a part of it. That led to the launch of Planted Detroit in 2018. Q: Why did you choose vertical farming as your model? What advantages does it offer in terms of sustainability? A: I evaluated multiple controlled environment agriculture models, including greenhouse farming but determined that vertical farming had more scalability potential in urban environments and was more aligned with what I think needs to be done on a large scale for mass food production. The ability to grow vertically also makes it possible to produce more food within a smaller physical footprint. Compared to traditional farming, this method uses fewer natural resources while maintaining consistent production levels. Q: How do you approach energy efficiency in vertical farming? A: When I first started researching vertical farming, LED lighting technology was still evolving. The legalization of cannabis led to significant advancements in this area, as companies like GE and Philips invested in more efficient, cost-effective grow lights. This helped drive down costs and improve performance, making vertical farming more viable at scale. LED lighting systems now allow for adjustments to optimize plant growth and energy use. These new lighting systems generate less heat, which means we only use and pay for the photons needed for plant growth. One of our lights allows us to tune the spectrum from red to blue, which not only impacts the plant’s taste and growth but also improves energy efficiency. Q: How does vertical farming contribute to a more sustainable food system in Southeast Michigan? A: One of the primary challenges in food systems is access to fresh, high-quality produce, and locally based food production can play a role in improving availability. Growing food year-round in a climate like Michigan’s is an advantage in itself. Seasonal limitations often mean that fresh produce must be imported from across the country. By producing food locally, we can shorten the time between harvest and consumption, helping to preserve both nutritional value and quality. In the long term, the goal is to establish a model where fresh, nutrient-rich food is widely accessible, whether through direct-to-consumer sales, grocery stores, or partnerships. Q: What other sustainability practices are in place at Planted Detroit? A: As I mentioned, energy efficiency is a key consideration, both from an environmental and operational standpoint. Lighting and climate control systems are continuously optimized to minimize energy consumption while maintaining stable growing conditions. Water usage is another critical factor. Vertical hydroponic systems allow for 95% less water consumption compared to traditional farming methods. Our system feeds the plants at their root systems with nutrient-dosed water that is then recirculated and cycled back through the plants. This saves a lot of water. In terms of waste management, growing media is used only once per crop cycle and then composted. Local organizations, including Sanctuary Farms, repurpose the composted material, creating a closed-loop system that supports other agricultural efforts in the area. Food waste is also minimized. Any excess products that cannot be sold are donated through Food Rescue U.S. to prevent unnecessary landfill contributions. Packaging materials are continuously evaluated to maximize recyclability. Q: How does Controlled Environment Agriculture (CEA) compare to traditional farming in terms of resource efficiency? A: Water conservation is one of the most significant benefits. With increasing climate challenges, particularly droughts, the ability to grow food using a fraction of the water required by traditional agriculture is an important factor. Energy consumption is often discussed in relation to CEA, as artificial lighting does require electricity. However, when considering the entire supply chain—including long-haul transportation, refrigeration, and food spoilage—vertical farming presents efficiencies that help offset its energy use. Additionally, because production is demand-driven, it reduces overproduction and associated waste. Q: How do vertical farming and a shorter supply chain benefit businesses and consumers? A: Reducing the number of steps between food production and consumption improves both freshness and sustainability. My goal is farm-to-fork. People should be able to buy their food directly from the farm and put it in their refrigerator. With urban farming, food can be harvested and delivered within a short timeframe, preserving its quality and reducing spoilage. While scaling this model presents logistical challenges, it represents a shift toward a more localized and efficient food system. Q: Who are your main customers, and how do they influence your sustainability goals? A: Most of our customers

Sustainable Fashion in Practice: Insights from Object Apparel

Object Apparel is a sustainability-driven clothing brand based in Detroit, dedicated to crafting handmade, organic apparel with a focus on ethical practices and environmental stewardship. Founded by artist and architect Mollie Decker, the company began in a spare bedroom of a high-rise apartment in Lafayette Park and has since grown into a live-work space in North Corktown. Object Apparel emphasizes the use of organic fabrics, natural plant-based dyes, and water-based screen-printing inks to create distinctive, high-quality pieces that offer a meaningful alternative to fast fashion. The brand’s mission goes beyond aesthetics, aiming to blend thoughtful design with sustainable practices that minimize environmental impact. SBN Detroit spoke with Decker to explore the sustainability challenges faced by small, handcrafted-apparel companies, the strategies behind maintaining eco-conscious practices, and the creative solutions that make sustainability integral to Object Apparel’s philosophy. Q: What inspired you to prioritize sustainability in your business, and how has that shaped Object Apparel? A: Sustainability is something I strive to practice in all aspects of my life. For the business, it’s shaped less visible areas like sourcing and production methods while also fueling creativity. For example, I often use scrap fabric to make unique, one-of-a-kind pieces, blending sustainability with artistic expression. Q: How do you approach sustainability in your materials, dyes, and production processes? A: We use organic fabrics, natural plant-based dyes, and water-based screen-printing inks, which are softer and bond to the fabric over time. This method is more sustainable than traditional plastisol inks and ensures a higher-quality feel. Committed to minimizing waste, our packaging is biodegradable, and we follow a made-to-order production model. Additionally, we aim to repurpose as many scraps as possible. Q: What do you see as the biggest sustainability challenges for small, handcrafted apparel businesses? A: Cost is a significant challenge. Ethical production is expensive, and many consumers compare small-batch prices to mass-produced items made overseas. Sustainable materials—natural dyes, organic fabrics, and even thread—are significantly more expensive than conventional alternatives. Balancing affordability while adhering to ethical practices requires constant attention to sourcing and wholesale opportunities. Staying true to our values while finding the right audience requires resilience and a strong voice. Sourcing sustainably is a challenge as well. I primarily work with mills and wholesalers who can accommodate small orders. For fabrics, I rely on a mill in North Carolina and a hemp wholesaler in California. Balancing budget constraints with sustainability is tricky, but supporting businesses that share our values is important to me. I think scaling would be a colossal challenge for small hand-crafted apparel businesses, and we’ve intentionally chosen not to do so. Everything is made in-house by me, and my partner, Mike, handles the screen printing. Everything we do is labor-intensive. Scaling would likely mean raising prices significantly or altering how we work, which doesn’t align with our ethos. I don’t believe being as profitable as possible and selling the most possible is sustainable. There’s more clothing already in the world than anyone could ever need in our lifetimes, so really… is making anything sustainable? It’s something I think about a lot. Q: Do you collaborate with local artists or makers, and how do those partnerships influence your work? A: While all clothing production is done in-house, we collaborate with photographers and models to create visuals for our brand. We also partner with other makers and friends to host events like group shows and clothing swaps, which foster community and support shared sustainability goals. Q: Are there emerging practices in sustainable fashion that excite you or align with your vision? A: I’m an architect by trade and came into fashion as an artistic outlet, so I don’t follow fashion industry trends closely. However, I’m excited about the growing availability of hemp fabric since hemp is an incredible material that’s sustainable and versatile. Legalization has opened doors to better options at more reasonable prices. Q: What approach works best in terms of educating customers about sustainability and its role in small brands? A: I’ve learned that sustainability works best when modeled rather than preached. All you can do is model the behavior yourself as an individual and a brand and then you seem to attract like individuals as well as invite people in to learn more when they decide it’s right for them. I don’t focus on marketing Object Apparel as a “sustainable” brand – it started as a passion project and remains rooted in art and ethics. Q: What advice would you give to someone entering the apparel industry who wants to be sustainable? A: Define your ethics and stick to them. Sustainability means different things to different people, and the industry is rife with greenwashing. Establish what matters most to you and your customers, and work within those parameters, just as we do in life.   Be sure to subscribe to our newsletter for regular updates on sustainable business practices in and around Detroit.

MI Hydrogen: Working To Unlock Hydrogen’s Potential

MI Hydrogen, an initiative of the University of Michigan, is dedicated to advancing the research, development, and deployment of hydrogen as a clean energy solution. Co-directed by Greg Keoleian, co-director of the Center for Sustainable Systems, and Todd Allen, Chair of the Nuclear Engineering & Radiological Sciences Department, MI Hydrogen strives to unlock hydrogen’s potential to reduce carbon emissions, drive economic growth, and establish sustainable energy systems for Michigan and beyond. SBND interviewed Keoleian to discuss MI Hydrogen’s vision, the efforts fueling its progress, and Michigan’s role in shaping a clean energy future. Q: What is MI Hydrogen, and how did it come to be? A: MI Hydrogen was launched in December 2022 by the University of Michigan’s Office of the Vice President for Research in collaboration with the School for Environment and Sustainability (SEAS) and the College of Engineering. The driving force behind this initiative is the urgent need to address climate change by transitioning to clean energy. Our mission is to accelerate the development of hydrogen solutions by leveraging expertise from across the university in technology, economics, policy, and community engagement. Hydrogen plays a critical role in decarbonizing areas particularly where electrification is challenging—such as medium- and heavy-duty transportation, industrial processes like steel production, glassmaking, semiconductor manufacturing, cement production, and chemical manufacturing processes. MI Hydrogen was developed to create interdisciplinary approaches that align technology, policy, and market forces to speed up clean and just energy solutions.  Climate change impacts are becoming more prevalent including heat stress, drought, wildfires, flooding, and heat stress and the damages and costs are escalating.  Time is running out to avoid irreversible damage to the planet’s life support system and delayed action means greater costs. Q: What projects or initiatives is MI Hydrogen working on? A: We have launched four research projects to date: Hydrogen Demand Analysis for Michigan: Building upon a State of Michigan Hydrogen Roadmap we collaborated with Michigan businesses, industry trade associations, state agencies, and national labs to quantify current hydrogen demand and projected future demand through 2050 for industry and transportation sectors. This project also estimated the potential for greenhouse gas emission reduction with the deployment of clean hydrogen solutions. Role of Hydrogen in Sustainable Transportation: A team from the Center for Sustainable Systems, Aerospace Engineering, and Naval Architecture and Marine Engineering evaluated hydrogen’s applications across ground, air, and marine transportation. We compared factors such as energy efficiency, costs, and range for hydrogen, e-fuels made with hydrogen as well as battery electric options. Battery electric vehicles are much more efficient than hydrogen alternatives for light-duty passenger vehicles. Hydrogen can play a key role in powering heavy-duty trucks, rail, aircraft, and many marine applications. Role of Hydrogen in Decarbonizing the Industrial Sector: In partnership with colleagues in mechanical engineering, we analyzed hydrogen’s role in reducing emissions across industrial applications like chemical manufacturing and steelmaking. We characterized each hydrogen industry application, compared hydrogen demand projections, identified implementation drivers and challenges, and assessed the decarbonization potential of each application. Hydrogen Ecosystem Planning: One role we play with the MACH H2 hub is developing a framework and set of principles to guide the design, infrastructure siting, investment, workforce training, and community engagement that are all necessary for hydrogen production, delivery, storage, and end-use applications. MI Hydrogen is supporting the Midwest Alliance for Clean Hydrogen hub demonstrating and deploying hydrogen technology in Michigan and the region through a $1 billion investment under the Bipartisan Infrastructure Law. We are also helping build the hydrogen ecosystem in Michigan by hosting seminars and workshops bringing together stakeholders from business and industry, government agencies, NGOs, and academics from across the state and Great Lakes region. Q: In what ways is Southeast Michigan well-positioned for hydrogen usage and innovation? A: Southeast Michigan is a global leader in transportation, and we expect hydrogen to play a large role in medium- and heavy-duty transportation. Major automakers like Ford, General Motors, and Stellantis are actively developing hydrogen-powered trucks and other technologies. Beyond its role in reducing greenhouse gas emissions, hydrogen addresses another critical challenge: air pollution from diesel vehicles. Diesel exhaust is a significant contributor to health risks, such as asthma and other respiratory conditions, and these vehicles are often concentrated in industrial corridors and areas inhabited by socio-economically vulnerable communities. By replacing diesel with hydrogen, we can help address environmental justice by mitigating these health risks. Further, Michigan’s strong presence in steel production, semiconductor manufacturing, chemical production glassmaking, and cement production, positions the state to lead the transition from natural gas to clean hydrogen. This shift is essential to decarbonizing these sectors. Q: What challenges does Michigan face in adopting hydrogen as a clean energy solution? A: The cost of hydrogen is a challenge. To accelerate the deployment of hydrogen, the cost must be reduced, and this is not unique to Southeast Michigan. Another challenge is infrastructure. The infrastructure for fueling needs to be put into place and that requires large-scale investment and coordination across the continent in the case of long-haul trucking. The “chicken and egg” problem here is a significant barrier as well – there is a lack of demand for fuel cell vehicles without hydrogen fueling stations and low-cost hydrogen, and manufacturers are less willing to invest in hydrogen vehicles without a customer base, and the infrastructure won’t be developed without the vehicles and demand.  This is a difficult cycle that requires government investment such as the Bipartisan Infrastructure Law to overcome. However, federal and state investments will help to overcome these challenges. Q: What are the environmental and economic benefits of hydrogen for Michigan? A: Environmentally, hydrogen offers a pathway to significant carbon reductions. As discussed, clean hydrogen, produced from renewable or nuclear electricity, eliminates not only greenhouse gas emissions but also air pollutants like particulates and VOCs from combustion. This is particularly important for health outcomes in freight corridors. Economically, Michigan plays a lead role in transitioning to clean energy. With billions of dollars being invested in clean energy, Michigan has the opportunity to attract industries,

Redesigning Marine Propellers with the Environment in Mind

Sharrow Marine, headquartered in St. Clair Shores, Michigan, is focused on marine propulsion technology. In 2024, the company’s Sharrow Propeller™ was recognized as a finalist in Fast Company’s Best World Changing Ideas North America award category. The awards honor businesses and organizations that are developing creative solutions for “the most pressing issues of our time.” SBND recently interviewed Greg Sharrow, CEO and inventor of the Sharrow Propeller, about the company’s technology and its impact on the environment and the marine industry. Q: Tell us about Sharrow Marine and your propellers. A:  Sharrow Marine designs and manufactures propeller technology. Our propeller – recognized as the first major advancement in propeller design since the 1830s – eliminates the traditional propeller tip vortices, which are a major source of energy loss. This “tip-less” design leads to a 30% increase in efficiency and reduces underwater noise by up to 80%, making it quieter than conventional propellers. From a sustainability standpoint, this means less fuel consumption, reduced noise pollution in marine environments, and lower carbon emissions. Q: How does your propeller design directly impact sustainability in the marine industry? A: Every one of our propellers is designed for a specific application, and our process allows us to predict thrust within these applications and design for maximum efficiency. This, in turn, reduces the amount of fuel a vessel needs to operate. A lot of the fuel burned in the tanker industry, for example, is bunker fuel, which is a less refined, high-sulfur fuel. By reducing the fuel required, we not only cut carbon emissions but also reduce the pollutants entering the water. This approach creates a significant positive impact on the marine ecosystem. Q: How does the increased fuel economy of your propellers translate to measurable reductions in carbon emissions? A: The math is straightforward – burn less fuel and emit less carbon. Our propellers are about 30% more fuel-efficient, which means a corresponding 30% reduction in carbon emissions. For fleet operators and the recreational boating community, this translates to significant savings and a smaller environmental footprint. Q: What challenges did you face in developing this product? A: The biggest challenge was essentially rewriting the book on propeller design. We had to develop entirely new theories of operation and create software to test thousands of designs quickly. Assembling a team of engineers and software experts to write the code was a feat, but we now have an incredible team. Another hurdle was manufacturing. Each propeller requires its own program and a multistep production process. Finding a manufacturing partner who could handle such complexity wasn’t easy. I traveled the world and ended up finding the right partner in my backyard, which is not surprising seeing as Detroit is the place for manufacturing. We were fortunate to partner with Detroit Dynamics. They’ve been incredible in helping us establish a fully functional manufacturing facility here in Detroit. Q: Beyond fuel efficiency and emissions, what other sustainability benefits does your propeller technology offer? A: Noise reduction is a big one. The noise pollution in our oceans that is created by cavitation generated from traditional propellers has a devastating effect on marine wildlife. Our technology reduces underwater noise by 3–15 decibels on average, which helps protect marine ecosystems. Additionally, all of our materials are sourced within the United States, further minimizing our carbon footprint and supporting local economies. In terms of sustainability in Southeast Michigan, Detroit is integral to who we are. This city has a rich history of engineering and manufacturing expertise, and we’re proud to be a part of that legacy. All our propellers are manufactured here in Detroit, creating jobs and supporting the local economy. Q: What opportunities does your technology present for fleet operators and recreational boaters? A:  For fleet operators, the savings in fuel costs are massive, and for recreational boaters, the benefits go beyond fuel efficiency. Our propellers reduce vibration and noise, improve high-speed control, and make docking in tight quarters much easier. For the average boater who logs about 52 hours a year, the return on investment starts the moment they turn the key. Q: How do you see Sharrow Propellers contributing to the broader efforts to decarbonize the marine industry? A: We’ve already established a strong footprint in the outboard motor market, but the inboard motor market – specifically for blue water and oceanic vessels – represents a massive opportunity. These vessels are some of the biggest polluters due to their reliance on bunker fuel. By applying our technology to this segment, we can significantly reduce sulfur emissions and improve fuel efficiency, effectively decarbonizing a critical part of the industry. We’re also partnering with VEEM in Australia to bring our innovations to the global market and are in the process of growing to full production scale of the SHARROW by VEEM. Q: Looking ahead, how do you see your propeller technology fitting into broader sustainability efforts? A: We’ve been focused on the marine industry, but interestingly, the propeller was originally developed for use in the air. So, as we move forward, expanding into renewable energy applications is a priority. Whether it’s wind turbines, hydro-energy, or further innovations in marine propulsion, our goal is to make a meaningful impact on how energy is generated and consumed.   Be sure to subscribe to our newsletter for regular updates on sustainable business practices in and around Detroit.

RE-TREE Creates a Marketplace for Property Owners to Preserve Mature Trees

RE-TREE is a for-profit digital marketplace designed to offer property owners a more responsible alternative to traditional healthy tree removal. The platform enables property owners to sell, relocate, or donate their trees, promoting sustainability and preservation. Transplanting services supporting the marketplace are provided by a network of certified and trained contractors, ensuring professional and reliable execution. A detailed proposal for these services is presented to the buyer, approved, and collected by RE-TREE upon project completion. In addition to transplanting services, RE-TREE offers plant healthcare solutions designed to enhance the growing environments of mature trees. These services focus on improving the health span of trees, ultimately contributing to their longer lifespan. The marketplace operates as a virtuous cycle, with tailored approaches for residential and commercial property owners. A transaction fee applies to the appraised value of the tree: For residential property owners, fees range from 20-30%, depending on the appraised value of the tree. For commercial property owners, a flat 20% transaction fee is applied. RE-TREE bridges the gap between environmental responsibility and practical solutions, creating value for both property owners and their communities. SBN Detroit sat down with RE-TREE’s founder and CEO, Dennise Vidosh, to discuss the urban and suburban landscaping waste challenges in Southeast Michigan, the economic and environmental impact of saving mature trees, and how these efforts are contributing to broader climate action goals. Q: What is the impetus behind RE-TREE? A: As a little girl, I was deeply connected with nature, and I wanted to preserve the beautiful environment I grew up enjoying. My purpose materialized in 2018 with the innovative vision of preventing the unnecessary destruction of mature trees by developing a digital marketplace for their relocation. Through the power of technology, RE-TREE provides a platform for property owners to buy, sell, and relocate mature trees, turning a potential environmental loss into economic and ecological gain. This initiative is a solution to a global issue, transforming private property landscaping practices and redefining urban sustainability. Our momentum is driven by two key forces: the era we’re living in—commonly referred to as the Anthropocene, where we are acutely aware of our impact on the environment— and the green industry’s growing capacity and enthusiasm to embrace innovation and prioritize ecological preservation, setting the stage for meaningful change. Q: What are the current challenges facing Southeast Michigan in terms of managing urban and suburban landscaping waste, and how significant is the problem? A: One major challenge is a lack of awareness—awareness that a responsible solution exists when a tree outgrows its space or is in the way of new construction. Another challenge is perception. We’ve encountered some pushback from municipalities that don’t yet believe our tree preservation goals align with local ordinances. However, we’re actively working with these municipalities to find solutions, turning skeptics into our strongest advocates. Mature tree preservation is our mission, and while trees in commercial green spaces have historically followed a linear lifecycle, we’re making it cyclical to extend their lifespan and environmental contributions. Q: How does the concept of replanting trees and bushes instead of discarding them align with broader sustainability goals? A: Relocating mature trees rather than removing them aligns seamlessly with global sustainability goals. Mature trees provide exponential benefits to our planet, people, and communities. When healthy trees are removed simply because they’re in the way, all those benefits are lost. RE-TREE connects the dots through technology, making it easy for property owners to take a more sustainable approach. Once a mature tree is cut down, we can never replace its ecological value by planting smaller, less mature trees. Protecting these trees ensures a continuous cycle of giving back to the environment. Q: What are the environmental impacts of saving and replanting trees compared to traditional disposal methods? A: Once we destroy a mature tree, we can never catch up to the value it provides—both now and in the future. Growing trees as an agricultural crop on open land isn’t sustainable either. Preserving existing mature trees ensures we maintain their current environmental benefits, which include carbon sequestration, oxygen production, cooling effects, reduced erosion, and providing habitats for biodiversity. Q: What are the key requirements for a tree or bush to be successfully salvaged and replanted? A: The tree must be free of damage or disease and accessible for responsible extraction. There must be no overhead wires obstructing its removal path, and it needs to be a certain distance from any structure, depending on its size. Generally, we work with trees under 12 inches in trunk diameter or 35 feet tall. Bonus points for unique shapes or styles! Q: What are some of the biggest logistical or operational challenges in implementing a tree-replanting program? A: Building a network of certified service providers is currently the most significant challenge. Attracting, training, and certifying contractors to move living organisms responsibly takes time. The supply of trees will drive the demand and attract contractors, creating a new revenue stream for green industry professionals while enhancing their environmental stewardship. It’s a process of “build it, and they will come.” Together, we can build this supply chain and revolutionize the industry. Q: What are the economic and environmental benefits for homeowners, developers, or municipalities who choose to salvage trees and bushes instead of removing and replacing them? A: The benefits are immense. A mature tree sequesters eight times more carbon produces eight times more oxygen, and provides vital habitats for countless species, contributing significantly to biodiversity. These trees are invaluable to the planet’s ecosystem, and their preservation actively mitigates climate change impacts. Municipalities can benefit from residents or businesses donating trees to local parks, while commercial property owners can transform their green spaces into revenue-generating assets. It creates a never-ending cycle of giving back, fostering community connection and shared environmental goals. Q: How does preserving trees contribute to broader climate action goals, such as reducing greenhouse gas emissions or improving biodiversity in Southeast Michigan? A: Preserving carbon sequestration benefits is the most immediate and obvious impact. By advising

Safe Water Engineering – Tackling Water Safety in Southeast Michigan

Southeast Michigan faces significant challenges in water infrastructure and safety, particularly in addressing aging systems, lead contamination, and ensuring equitable access to clean drinking water. Safe Water Engineering LLC, a Detroit-based consulting firm founded by Elin Warn Betanzo, focuses on improving access to safe drinking water through engineering and policy solutions. As the architect behind Detroit’s lead service line replacement program, Betanzo has played a key role in improving water safety in the region. The city has replaced over 11,000 lead service lines since 2018, providing safer drinking water to thousands of residents. Beyond infrastructure, Betanzo’s work also focuses on water safety and affordability policies. SBN Detroit had the opportunity to interview Betanzo regarding the challenges and opportunities surrounding water management in Southeast Michigan, the lead pipe replacement efforts, and the steps needed to ensure sustainable and equitable access to clean water. Q: What is the impetus behind Safe Water Engineering? A: I started Safe Water Engineering in 2017 after the Flint water crisis revealed a critical need for specialized expertise in lead and drinking water safety. Our work focuses on helping water utilities meet and go beyond compliance requirements for drinking water safety and supporting communities by providing access to data, information, and education. Q: Can you tell us more about the city’s lead service line replacement program you designed and your work in drinking water policy? A: From 2017 to 2020, I worked with the Detroit Water and Sewerage Department (DWSD) to design the city’s lead service line replacement program. At the time, it wasn’t a regulatory requirement, but Detroit wanted to take a proactive approach. My work involved developing procedures for conducting lead service line replacements, incorporating replacements into broader infrastructure projects, conducting outreach to residents, and ensuring safety during replacements – like providing filters and flushing instructions. We also created a comprehensive program outlining responsibilities, timelines, and costs. The program is now underway, and the city has committed to replacing all lead service lines within ten years. Q: What are the biggest challenges communities in Southeast Michigan face in ensuring clean and safe water? A: Southeast Michigan’s water infrastructure relies on the backbone of water and sewer mains that Detroit built during the last century. It was designed and constructed for the time when it was built – a different population distribution and climate conditions than we have now. Over time, the region has faced significant changes, including population shifts, aging infrastructure, and climate impacts like altered precipitation patterns. Key challenges include the need to renew and replace aging water mains, sewer systems, and lead service lines, many of which were installed during the first half of the last century. Additionally, when water rates were set in many communities, they did not account for the necessary infrastructure renewal costs especially when they relied on existing infrastructure to expand. This becomes a challenge when we see this multitude of issues and challenges coinciding. It is essential to ensure public health protection is maintained as a top priority while developing water affordability programs to ensure everyone can afford access to that protection. Q: How has climate change impacted water systems in the region, particularly with issues like flooding, stormwater management, and aging infrastructure? A: The magnitude and frequency of extreme rainfall events have increased significantly in recent years, with Southeast Michigan experiencing multiple 100-year storms within a five-year span. The current infrastructure was not designed to handle such high volumes of water, leading to challenges like stormwater runoff overwhelming wastewater systems, and causing untreated releases into the Detroit River and Lake St. Clair. Additionally, urban development has created more paved surfaces, increased runoff, and disrupted natural drainage systems. This combination has led to significant flooding issues, further straining aging wastewater and stormwater systems. Q: Why are lead service lines a concern, and what is being done to address them in Southeast Michigan? A: In Michigan, community water systems were required to report the potential presence of lead service lines to the state in 2020. Statewide, up to 26% of these systems may have lead service lines, with Southeast Michigan particularly affected. For example, Detroit alone has up to 108,000 lead service lines, and potentially twice as many may exist in the surrounding communities. When water – although treated with corrosion control at treatment plants – passes through leaded materials, lead is frequently measured at the faucet – the point where it becomes drinking water. Lead in drinking water poses a significant health risk, as it is a neurotoxin with no safe level of exposure. Michigan was the first state that required mandatory lead service line replacement, mandating the removal of all lead service lines by 2041. A new federal rule accelerates this timeline nationally, requiring removal by 2037. Utilities are also required to notify residents if their home has lead pipes, enabling them to take precautions like using certified lead-reducing filters, which are highly effective when properly maintained. Q: What are the challenges involved in making Southeast Michigan’s drinking water safer and more affordable? A: Unlike housing, food, and electricity, Michigan lacks a statewide water affordability program. Rising water rates to fund infrastructure upgrades have made water unaffordable for some households, despite the public health necessity of these investments. There are programs like the Great Lakes Water Authority’s WRAP Program and DWSD’s Lifeline Plan, but the need for support exceeds the current resources available. Legislation to create a statewide water affordability program is under consideration, but challenges remain in addressing the broader affordability gap. Q: What strategies or technologies are being implemented to address lead contamination, and what additional steps are necessary beyond lead pipe replacement? A: Lead service line replacement is critical, but residents don’t have to wait for this to happen to reduce their exposure to lead in water. Certified lead-reducing filters are available and highly effective, provided they are properly maintained. Public education is essential to ensure residents understand the risks and how to take action. Additionally, programs like the Michigan Department of Health

Beacon Manufacturing – Supporting LEV Innovation at Newlab

Newlab at Michigan Central is home to a new 10,000-square-foot center for manufacturers of light electric vehicles (LEVs) – two- and three-wheeled vehicles mostly used for short distances, such as e-scooters and e-bikes. The center, dubbed “BeaconLab,” is operated by the newly created Beacon Manufacturing and will operate as a prototyping and logistics services manufacturing consultant, coordinator, and manufacturing hub for startups. It is equipped with several bays of assembly stations and state-of-the-art advanced machinery for robotic wheel building, laser-tube cutting, and robotic welding, to accelerate startups’ journey from concept to scale. The company leases the space from Newlab and is paid a fee for service by clients. Beacon Manufacturing also owns the Detroit Bikes brand, which it purchased in May from Cardinal Cycling Group. SBN Detroit interviewed CEO Gary Thornton, who previously was general manager of Detroit Bikes, about plans for the center, trends in LEV mobility, and other topics. Q: Beacon Manufacturing is focused on prototyping and logistics services for light electric vehicle (LEV) manufacturers. Explain what this entails. A: Our work at Beacon Manufacturing is twofold. First, we focus on prototyping, helping startups move from concept to tangible products. We take initial designs and create physical prototypes, allowing companies to refine their ideas and demonstrate proof of concept. The second part involves logistics services, acting as a third-party logistics (3PL) provider. We rent warehouse space specifically tailored for LEVs. Our team manages everything from storing products to shipping them out, ensuring each vehicle is operational before it leaves the facility. This includes handling specific challenges related to LEV batteries and ensuring compliance with regulations. Q: What types of companies and vehicles do you work with? A: We primarily collaborate with companies focused on last-mile delivery solutions. These startups are experimenting with new vehicle designs – e-scooters, e-bikes, and even electric tricycles – to solve urban transportation issues. One example of our work is with Civilized Cycles, a Newlab-based startup developing an e-bike with a tricycle and trailer attachment. Their solution addresses congestion in cities like New York, where specific zones impose fees on larger vehicles. Using a smaller LEV, they can transport goods efficiently without contributing to traffic or emissions. Q: What is the market potential for LEVs? A: The LEV market is massive and largely untapped. The need for efficient, low-emission transportation in urban areas is growing rapidly. We’re seeing interest from companies large and small, all looking to shift away from traditional vehicles. Cities like New York, Paris, and others are exploring ways to reduce congestion and improve air quality by shutting down portions of the city to standard vehicles or charging usage fees. LEVs fit perfectly into this evolving landscape, providing a practical and sustainable solution for short-distance travel and deliveries. Detroit’s ecosystem is ideal for LEV development with its roots in automotive design and manufacturing.  Within a 20-mile radius, you can find suppliers for almost any component. We are working on LEVs as mentioned to address the last mile of delivery or traffic congestion, and we are currently working on an extremely rugged LEV that can be used to deploy power grids remotely for farmers and everything in between. There is a constant quest to come up with ideas to push the limits within Newlab and Southeast Michigan. Q: What challenges do LEV manufacturers face when scaling production? A: The biggest hurdle is cost. Traditional auto suppliers aren’t set up for small runs, so startups often face prohibitively high quotes. We are set up to focus on the individual manufacturing processes and tailor solutions to their scale. Another challenge is managing expectations. Many entrepreneurs want a final product that’s perfect, but early prototypes need to prioritize function over aesthetics. Our role is to guide them through this process, ensuring they have a viable product to show investors or test in the market. Q: What types of collaborations do you facilitate, and how do these impact LEV development? A: We enable companies to focus on their core strengths, such as design and marketing, by handling their logistics, manufacturing, and shipping needs. Currently, our warehouse hosts four electric motorcycle brands, two e-bike brands, and even an electric snowmobile company. These collaborations foster a supportive environment where different players in the LEV space can learn from each other, share resources, and accelerate their growth. Q: How do you see the LEV market evolving in the next 5–10 years, particularly in Southeast Michigan? A: The LEV market is poised for explosive growth, much like the e-bike market has experienced. The acceptance of battery-powered tools and vehicles is spreading quickly. From electric lawnmowers to chainsaws, we’re seeing a cultural shift toward cleaner, more efficient technologies. In Southeast Michigan, the manufacturing expertise built over decades in the auto industry provides a strong foundation for LEV innovation. Detroit is uniquely positioned to become a hub for LEV development and production. Q: How has Newlab enhanced Beacon Manufacturing’s ability to innovate and scale? A: Newlab has been transformative for our operations. The state-of-the-art machinery and resources available here – CNC (computer numerical control) machines, cleanrooms for electronics, woodshops, and metal shops – allow us to tackle complex manufacturing challenges. The collaborative environment also plays a crucial role. Being part of a community of innovators means we’re constantly learning and pushing the boundaries of what’s possible in LEV manufacturing. What are your plans for BeaconLab as it relates to the LEV industry in Southeast Michigan and beyond? A: We’re focused on scaling our operations to meet the growing demand. At Newlab, we’ve set up five fully stocked workbenches that startups can rent to assemble their vehicles. This hands-on space allows entrepreneurs to bring their concepts to life. Additionally, we’re expanding our offsite facilities to accommodate larger manufacturing runs. Our new 20,000-square-foot warehouse will support startups ready to scale from prototypes to larger production runs of 100 or even 1,000 units. Also, I’m extremely optimistic about Detroit’s future in this space. The city’s deep manufacturing expertise, coupled with the growing demand for