The Greening of Detroit: Working to Create Healthy Urban Communities Through Trees, Education, and Jobs

LIONAL BRADFORD
Insert Caption Here

Established in 1989, The Greening of Detroit is a nonprofit organization with a mission to inspire sustainable growth of a healthy urban community through trees, green spaces, healthy living, education, and job opportunities.

To date, it has planted 147,000 trees and trained more than 1,000 people through its five-year-old workforce development program.

Putting trees in the ground is job one for the organization, but it also is involved in stormwater management and providing landscaping services to residents and businesses in the communities they serve.

President Lionel Bradford has been with the nonprofit since 2010 and is proud of its 35-year history. SBN Detroit interviewed Bradford about the organization’s programs, impact, and future.

Q: What was the impetus to begin The Greening of Detroit?

A: For years Detroit was known as the Paris of the Midwest, partly because of the tree canopy cover the city used to have. Between 1950 and 1980 Detroit lost over a half million trees due to Dutch Elm Disease, urbanization, and neglect due to financial struggles. In 1989, The Greening of Detroit was founded to reforest the city of Detroit.

Since its inception, 147,000 trees have been planted throughout the city. We also started a youth employment program as a way to educate and take care of these trees. Our Green Corps Summer Youth program at its height employed 200 high school students. That number decreased due to COVID-19, but it’s coming back up.

In a nutshell, our organization has two main pillars: workforce development and green infrastructure.

Q: What are you currently working on in terms of tree planting?

A: We are in the third year of a five-year strategic plan where we are looking to plant 20,000 trees throughout Detroit, Hamtramck, and Highland Park, and train 300 individuals who have barriers to employment.

Greening TreeGiveaway 2 Of 14
TREE GIVEAWAY

This plan fits into a larger initiative we are involved in called the Detroit Tree Equity Partnership. This is a collaboration with American Forest, DTE Energy, and the City of Detroit in which we are planning to plant 75,000 trees over the next five years.

There is a buzz in the city right now in terms of trees. We’ve done a lot of engagement and outreach. Recently we conducted a 500-tree giveaway, and there were still cars lined up after we gave away the last tree. It’s great to see this.

Q: What is your involvement with the Walter Meyers Nursery?

A: Walter Meyers is a tree nursery on 72 acres in Rouge Park that for years went untouched. In 2004, The Greening of Detroit – with the city’s permission – took over managing that property to serve as a training ground for our adult workforce development. We have used it as an outdoor classroom setting.

In 2017, we put together a master plan to turn it back into a working nursery operation. As an organization, we are looking for ways to generate revenue for our training programs and to plant our trees. We want to control our destiny and cut down the carbon footprint involved in having trees shipped in.

We have planted over 4,000 trees in the nursery and harvested our first 200 trees last year.

The goal is to get to a point where we are selling 5,000 trees annually to municipalities, the City of Detroit, and the community.

Q: What sustainable impact do you think this brings?

A: In addition to creating green infrastructure in the city, community engagement is at the heart of what we do. Our job is to get trees in the ground, but we do not want to impose our will. We want to be invited into communities. Not only do we want residents to have a say, but we also want them to be a part of the work. This is a model that speaks volumes in terms of sustainability, and it’s held up across the state and the country.

Q: How does The Greening of Detroit impact businesses?

A: We engage and work with business owners in the communities we are involved in. Many of them bring us in to green their properties.

The more green space we can add for businesses, the more it helps aesthetics and foot traffic. Green space and economic development go hand in hand.

Also, from an economic standpoint, our education program puts people into jobs doing work around the city, which enhances the economic viability of Detroit as well.

GC Citizens Bank 3
TRAINING VOLUNTEERS

Q: In what other ways does the organization create green infrastructure in the city?

A: Stormwater management. We have installed three major bioretention ponds around the city that hold up to a million gallons of water. These are in Rouge Park, Chandler Park, and Eliza Howell Parks. We also work with residents and businesses to replace impervious surfaces with green infrastructure through our Land + Water WORKS Coalition.

Q: You have an adult workforce program from which over 1,000 Detroiters have graduated in the past five years. How does this work?

A: This is a six-week program called the Detroit Conservation Corps. Sixty percent of those who have graduated were previously incarcerated. We are passionate about helping that population get credentials and secure jobs that pay decent wages.

We work with a network of businesses looking to employ, most from the tree care and landscaping industries. These companies work in tandem with our advisory committee to help us build our curriculum and help with job placement. We have hired a small percentage of our trainees ourselves.

Q: What is the future of The Greening of Detroit?

A: Community engagement will always be a focus. We also are rebuilding our environmental education. These programs fell by the wayside before and during COVID-19, but we are working to get into schools, facilitate field trips, and educate our youth.

We truly believe that getting the Meyers Nursery operations up and running is key for us moving forward. It will be important for us to generate our revenue.

I’m proud we’ve been able to sustain the organization for 35 years. I feel good about the climate of the city in terms of how people feel about trees and think things will continue to get better from here.

 

Be sure to subscribe to our newsletter for regular updates on sustainable business practices in and around Detroit.

Kim Kisner

Kim Kisner

With over 25 years of experience in the development and execution of strategic branding, content planning, and copywriting for brands such as Gatorade, Ford Motor Company, and Under Armour, and published by SEEN Magazine, The Jewish News, and countless health and lifestyle journals and blogs, Kim helps companies, brands, and people tell their stories.

More From SBN Detroit

Preparing for the AI Energy Era

ThermoVerse is a Detroit-based urban innovation startup founded by engineer and researcher Shantonio Birch. The company’s work centers on advanced thermal energy storage and people-focused building technologies that reduce waste, stabilize indoor environments, and free up electrical capacity. SBN Detroit interviewed Birch about the future of grid resiliency, energy equity, and why Southeast Michigan is positioned to lead in next-generation smart city innovation. Q: What is the impetus behind the work you do? A: ThermoVerse is focused on one of the biggest stability issues we face: how do we allow high-energy users like data centers to coexist in communities without competing for the same energy we need to heat homes and businesses? Our goal is to reduce the largest source of energy consumption in buildings — the HVAC system — so more energy is available at the panel. We want to empower building owners to turn their buildings into value-added assets instead of liabilities. Q: What are the biggest challenges buildings face? A: It all comes down to energy. There are many issues in the built environment, and I think of buildings like the human body — everything is connected. We talk about indoor air quality and comfort, but when you look at economic development, the thing that will get this nation moving is our relationship to energy. Right now, poor power quality is being distributed through the grid and into homes, affecting how our devices and systems function. When you layer on additional demand from advanced manufacturing, EVs, and AI data centers, we’re going to experience more brownouts and blackouts. That’s the biggest challenge buildings are facing: how do we allow this huge economic wave — fueled by AI — without compromising communities? Q: What technologies or approaches will have the greatest impact on reducing energy waste in buildings? A: Anything simple. The biggest barrier for new technology is integration, so solutions have to be straightforward. I believe thermal energy storage is a major opportunity. It will play a huge role in meeting grid-resiliency needs. Renewables like solar are valuable, but they don’t solve the smart-growth challenge we face. We need growth that strengthens the grid rather than stressing it. Q: How does better thermal management translate into healthier or safer living conditions? A: I found my way into this field because I experienced heat stress in my own townhouse apartment during the pandemic while studying at U-M. I was close to heat stroke. We’re seeing more and more cases of heat stress in hospitals and communities now. Better thermal management helps reduce those risks. Beyond the health impact, there’s the economic side. Many people are spending a significant portion of their income on utilities. Improved thermal performance means lower bills, better living conditions, and more resilience as heat waves become more frequent. Q: What role can innovation play in addressing energy inequity — especially in aging housing stock and low-income communities? A: I’ll say this boldly: most existing building technologies were not designed with equity or people in mind. They were built around the question, “How do we cool this space so we can have people here?” At ThermoVerse, we flip that script. We build around the people first. People-centric technologies will play a huge role in reducing energy demand and supporting smart growth so AI and other advancements can coexist with communities instead of overwhelming them. Q: What makes Southeast Michigan a meaningful place to build and test smart-city and energy-efficiency technologies? A: If you look at major cities like Chicago or New York, Detroit stands out. We have the greatest potential for smart-city innovation because our built environment is underdeveloped in certain areas, making the starting point ideal. We can embed smart infrastructure into buildings more easily to enable fluid energy transfer between the grid and the built environment. There’s also a level of openness and willingness here that you don’t always find in cities that are already fully built out. Q: What barriers still slow down the adoption of innovative building technologies, even when they’re proven to reduce waste? A: Integration. That is the barrier for most proven technologies. We also have split incentives in the built environment. Building owners are our customers, but their customers — the tenants — want a better user experience. Then you have utilities, with power-purchase agreements and rate structures that complicate adding new technologies. And finally, the contractors. They’re the ones installing the equipment. If they don’t understand how a new technology fits into existing systems, it won’t be integrated. Heat pumps are a good example — contractor knowledge gaps can slow down adoption, even when the technology is solid. Q: For building owners looking to modernize, where should they focus first to get the biggest energy impact? A: If you’re going to modernize, you have to measure. Establish a baseline. Invest in sensors and meters to understand your energy use down to the unit. You can’t manage what you don’t measure. Once you have visibility, you can start thinking about the ecosystem of technologies that will create the biggest short-term and long-term impact. Ultimately, we need buildings — and neighborhoods — where energy flows bi-directionally between the grid and the built environment. Q: Looking ahead, what do you believe will define the next chapter of energy innovation in Detroit and more broadly? A: Detroit has a deep understanding of how communities and businesses coexist. The next evolution of the built environment here will be people-based — designed around the experience of living and working well. Nationally, we’re at a very interesting moment in energy. For years, the “energy transition” has been politicized, and we’re now looking at it through an economic lens driven by AI. The biggest opportunity ahead is doubling our energy production to meet the demands of AI data centers. The White House recently launched the Genesis Mission — the largest investment in strengthening our national energy reserve to prepare for the new digital era. There’s an enormous opportunity for young people to enter this

Read More »

Strengthening Michigan’s Ecosystems

Pollinators are essential to Michigan’s ecosystems, food systems, and long-term environmental resilience — yet they face increasing threats from habitat loss, pesticides, disease, and climate change. As Southeast Michigan looks for scalable, science-based approaches to ecological stewardship, the University of Michigan-Dearborn has emerged as a voice in pollinator conservation, sustainability, and community education. SBN Detroit interviewed Dr. David Susko, Associate Professor of Biology and Chair of Biology in the Department of Natural Sciences at UM-Dearborn, about the university’s Bee Campus USA affiliation, the initiatives underway on and beyond campus, and why the region is positioned to advance pollinator health. Q: What role does Bee Campus USA play at UM-Dearborn? A: First, it’s important to distinguish Bee City USA from Bee Campus USA. They share a common mission, but Bee Campus USA focuses specifically on higher education institutions. Both programs create a national framework — and a third-party certification — that helps cities and campuses advance pollinator education, habitat management, and long-term preservation. For us, the affiliation established a baseline. It gave us a structured way to track what we were already doing, identify gaps, and strengthen our commitment to pollinator health. It also connects us to a national network so we can benchmark progress, share strategies, and stay accountable. In many ways, it formalized work that had been happening here for decades. Q: What concrete steps has the university taken to support pollinator health, biodiversity, and sustainable landscapes? A: Many of our efforts predate the certification. UM-Dearborn has had an organic community garden since the 1970s and a strong environmental stewardship culture. Since I joined the campus in 2003, we’ve expanded those efforts significantly. We’ve added pollinator gardens and rain gardens, managed a campus bee yard for several years, and partnered closely with our facilities and grounds teams. They’ve been instrumental — reducing pesticide use, transitioning to organic fertilizers, and designating additional “no-mow” or naturalized areas on campus. These provide habitat for insects, reduce emissions from mowing, lower maintenance costs, and support overall soil and ecosystem health. Q: What challenges have you encountered in implementing pollinator-friendly landscapes? A: The biggest challenge is cultural. People often equate “well-maintained” with “closely mowed.” A pollinator-friendly landscape looks different — and sometimes that difference requires explanation. These spaces aren’t unkempt; they’re functioning ecosystems. Naturalized areas improve biodiversity, reduce fertilizer use, cut emissions, and support wildlife. Part of our work is helping people reframe what beauty looks like in a sustainable landscape. Once they understand the ecological benefits, they usually become strong supporters. Q: How are students, faculty, and staff involved in these initiatives and what types of engagement have you seen? A: Engagement is one of our greatest strengths. The Environmental Interpretive Center (EIC), which opened in 2001, draws thousands of visitors each year for free programming related to ecology, natural history, and pollinators. We host workshops, seasonal programs, and young naturalist sessions. These opportunities reach not only students, but families, K-12 classes, and community members. We also offer volunteer stewardship events — “Stewardship Saturdays” — where participants help remove invasive species and restore habitat quality. These have become incredibly popular. And at an academic level, pollinator initiatives are woven into coursework, research, and capstone projects. For many students, this becomes their first real stewardship experience. They see how their work directly contributes to the regional ecosystem and realize the role they can play in addressing pollinator decline. Q: Can you share an example of how sustainability and pollinator conservation intersect with experiential learning or research on campus? A: A great example is the PolliNation Project, which began when a student approached me wanting to take more action. Ultimately, this became a campus and community-wide initiative to build insect hotels in order to promote pollinator awareness and conservation. Insect hotels are like birdhouses for pollinators. Our students built and distributed roughly 250 of these hotels across the region. We worked with the College of Engineering and Computer Science, part of which is a design course where students develop apps for real-world stakeholders. The students ended up creating two digital tools: the PolliNation ID App, which helps users identify species, and the PolliNation Hotel App, which tracks locations and resources for “insect hotels.” The project earned a Ford College Community Challenge (C3) Grant and inspired broader outreach. Rescue Michigan Nature Now donated additional hotels, and our apps and online materials help residents build their own. This is what experiential sustainability education should look like — students creating tools with real ecological and community impact. Q: What value do these efforts bring beyond the campus borders, especially to Detroit-area communities? A: Our work extends into the region in several ways. The PolliNation Project has been integrated into the Rouge River Gateway Trail through interpretive signage, giving visitors a deeper understanding of pollinators. Our online resources help residents and community groups design their own pollinator habitats. We also collaborate with Detroit-based partners. For example, the Dearborn Shines initiative brings schoolyard gardens — including pollinator beds — to local schools. Students learn about nutrition, ecology, and pollinators simultaneously. UM-Dearborn students helped design and build these spaces, creating a powerful feedback loop of education, stewardship, and hands-on impact. Q: Detroit and Southeast Michigan have a unique ecological and urban history. Why is Bee Campus designation meaningful here? A: This region carries both ecological richness and environmental challenges. We have hundreds of native bee species in Michigan alone, many of which rely on the exact types of habitats we’re restoring. At the same time, urbanization and habitat fragmentation make pollinator conservation more urgent. Being a Bee Campus in this context means modeling what sustainable land stewardship looks like in a northern, urbanized ecosystem — and showing that cities and campuses can play a leadership role in ecological recovery. Q: What challenges and opportunities does Southeast Michigan’s climate present for pollinator protection? A: Overwintering is a major issue. Honeybees struggle in northern climates, and climate variability makes conditions more unpredictable. Beekeepers in Southeast Michigan are experimenting with improved insulation techniques

Read More »

Building a Circular Future

In the manufacturing world, sustainability is increasingly defined not just by recycling, but by what kind of recycling. For PolyFlex Products, based in Farmington Hills and part of Nefab Group, the future lies in creating closed-loop systems where materials are reused for equal or higher-value purposes — not simply “downcycled” into lower-grade goods. PolyFlex, which designs and manufactures reusable packaging and material handling solutions for the automotive and industrial sectors, is investing in circularity across its operations. The company’s goal is to ensure that plastics and packaging materials stay in circulation longer, retain value at end-of-life, and contribute to a more resilient supply chain. SBN Detroit interviewed Director of Sustainability Richard Demko, about the shift from downcycling to true circularity, the technical and cultural changes required, and what this evolution could mean for Michigan’s workforce and manufacturing economy. Q: What does “recycling for equivalent or higher use” actually look like in practice — and why is moving away from downcycling so important? A: Circularity, at its core, means manufacturing, recovering, and returning materials at end-of-life back into feedstock form to create something new. It’s about closing the loop — but we have to start with the basics: improving capture rates and diverting more material from landfills. The challenge is that recovery alone doesn’t guarantee success. One of the biggest barriers we face is the lack of demand for recycled feedstock. You can pour your heart into developing a fantastic recycling process, but if there’s no market for that material, the effort falls short. That’s why we need collaborative extended producer responsibility (EPR) systems that stabilize demand and make recycled regrind valuable, instead of punitive frameworks that simply point fingers. No single stakeholder can shoulder all the responsibility for circularity. It’s an ecosystem. Downcycling, meanwhile, is more like an off-ramp — it keeps materials out of landfills for a time but doesn’t truly close the loop. The goal is to return materials to their highest possible value so they can re-enter the economy at an equivalent or higher use. Q: In automotive supply chains, what opportunities do you see for keeping plastics and industrial packaging materials in circulation longer? A: Analyzing packaging fleets at the component level and asking what can be reused, what needs to be redesigned, and what truly has reached end-of-life is a great place to start. Pallets and lids are good examples. Often, those parts can be redeployed across multiple programs if you plan for it upfront. Traditionally, packaging was treated as disposable — once a product launched, everything associated with it ended up scrapped. Now we’re seeing a paradigm shift. Companies are designing for recyclability and reusability from the start. Some are even creating universal packaging platforms that can be shared across product lines. I like to say that carbon has become a kind of currency. When companies invest in reusable packaging, the return isn’t always measured dollar-for-dollar — it’s measured in carbon reduction. Those gains directly support broader sustainability goals, and, in some cases, they even help manufacturers comply with regulations that exempt circular packaging streams from waste classifications. At PolyFlex, we’ve already helped our customers divert several million pounds of plastic from landfills simply by applying design-for-recyclability principles and re-use strategies. It’s a shift toward smarter design — and it’s happening fast. Q: What are the biggest technical challenges in turning used materials back into high-value products — and where is the industry making progress? A: The biggest technical hurdle is consistency. Regrind blends vary depending on their source, and that variability can affect performance. The key is to manage it intentionally — introduce recycled feedstocks in small increments, fine-tune the process, and ramp up gradually. On the positive side, both equipment and operators are getting smarter. We’re seeing tremendous innovation in process technology that allows manufacturers to work with higher recycled content without sacrificing quality or throughput. Q: How do you design a product from the beginning with its second or third life in mind? A: It starts with identifying components that can become standards — like pallet dimensions or lid configurations that can be used across multiple applications. The more we can standardize, the more opportunities we create for re-use. It also requires a macro mindset. Instead of thinking in one product lifecycle, you think in systems. If you’re shipping a component from Detroit to Arizona, ask what can be sent back in that same flow. Can the packaging be refilled, reused, or repurposed? That kind of circular thinking transforms how supply chains operate. Material choice is another major factor. Corrugated packaging might last only a few trips, while plastics designed with the right impact resistance, UV stability, and weather tolerance can circulate for years. It’s about matching the material to its environment and expected lifespan. Q: Are there specific materials where circularity is advancing fastest — and others where it’s still a struggle? A: Rigid plastics — things like pallets, totes, and containers — are advancing the fastest because they’re high volume and easier to process. PET, HDPE, and polypropylene are particularly strong candidates because they can be reprocessed multiple times. Where we still struggle is with single-use, multi-layer packaging — the snack wrappers, films, and laminates that mix materials for barrier protection or freshness. Those layers make recycling extremely difficult. There’s exciting research happening in that space, but large-scale solutions are still developing. Q: What does a more circular plastics industry mean for jobs and skills in Southeast Michigan? A: It means opportunity — but it also means we need education. There isn’t a single university or technical program I know of that teaches recycling as part of its core curriculum. You can find polymer science programs but not recycling operations or circular systems. Training people for this industry is critical. If you lose a skilled recycling technician, you can’t just hire a replacement from a temp agency. It takes months or even years to become proficient. And with plastics recycling, mistakes are costly — something as simple as

Read More »

Building a People-First Economy in Michigan

People First Economy is a statewide organization working to redefine what success in business looks like—where profitability, community wellbeing, and environmental stewardship go hand in hand. Through education, measurement tools, and peer networks, the nonprofit helps Michigan businesses integrate social and environmental values into everyday operations. SBN Detroit interviewed Carlos Martinez, president of People First Economy, about shifting business mindsets, the growing connection between sustainability and profitability, and why Michigan is uniquely positioned to lead the next economy. Q: Tell me about People First Economy and how it came to be. A: At its core, People First Economy is about building tools and support networks that help shape an economy where people and environmental well-being are essential. We never shy away from the idea of the triple bottom line — businesses can absolutely make a healthy profit while supporting the communities they serve and the environment they depend on. We now serve more than 500 businesses statewide, from early-stage entrepreneurs to established companies. Much of our work centers on education and foundational business practices, but always through the lens of sustainability and inclusion. We started as Local First, which focused on supporting locally owned companies. Over time, our mission expanded to include environmental and social impact — because local economies thrive when businesses are sustainable, equitable, and community-driven. Q: As you work with cohorts, what mindset shifts do you see as companies move toward more inclusive, sustainable practices? A: The biggest shift happens when leaders stop viewing sustainability as an add-on and start seeing it as core to their business strategy. Once companies begin measuring their social and environmental impact, they start acting more proactively. Sustainability becomes part of how they innovate, manage costs, and create value. For larger or more mature businesses, this often leads to a broader cultural shift. They begin evaluating suppliers, employees, and even competitors differently — not as transactions, but as part of a shared ecosystem. That mindset unlocks collaboration and innovation. When companies realize that solving sustainability challenges can actually drive profitability, real transformation begins. Q: What tangible benefits do companies see when they measure their social and environmental impacts? A: One of the biggest is employee engagement. When people see that their company is making a positive difference, they feel connected to something larger than their job. We also see efficiency gains, cost savings from smarter resource management, and stronger brand loyalty. But there’s another layer — storytelling. When businesses can measure their impact, they can share those results in powerful ways. It becomes part of their identity. For example, Walker-Miller Energy Services and Cascade Engineering in Michigan both demonstrate how sustainability and inclusion strengthen brand reputation and build employee pride. More companies are now including impact reporting in their marketing or RFP materials because it helps them stand out. When you can prove your values, you open doors to new opportunities. A Harvard study recently found that purpose-driven companies embedding sustainability into their culture outperform the market nearly tenfold over two decades. That connection between purpose and profit is real. The business impact strategies create lasting value when they’re grounded in a deep understanding of a company’s financial metrics. Q: How do you encourage businesses to think about long-term value rather than short-term profit? A: This is always an evolving conversation, especially in challenging economic times. The key is understanding that we’re all interconnected. A diverse, resilient business community helps protect against national downturns and future disruptions. Companies that invest early in sustainable, innovative practices often find themselves better positioned when the market shifts. Patagonia is a good example — years ago, they were experimenting with regenerative agriculture, which at the time seemed niche. Today, it’s a standard for sustainable production. When you build trust, brand loyalty, and local supply chains, it creates stability. Over the long term, that stability translates to profitability. Q: Detroit and Michigan have a rich manufacturing legacy. How is the people-first model reshaping the regional narrative around business and jobs? A: Detroit is unique because it already has a strong foundation of community-based leadership. Other states look to Detroit as a model for what’s possible when innovation and inclusion go hand in hand. We’re still early in the process of embedding this mindset more broadly, but the momentum is there. When we opened applications for our latest sustainability cohort, we had more than 50 applicants for just 20 spots — which tells us there’s real appetite for this work. Our broader goals include connecting early-stage businesses with those further along in their sustainability journey — through tools, mentorship, and experiences like conferences where they can see what’s possible. It’s about building a community of practice. The more we connect those dots, the stronger our local economy becomes. Q: If you were advising a mid-size company in Detroit today, what’s the best first step toward embedding people-first practices? A: Start by understanding where you are. We always recommend beginning with a sustainability or impact assessment. Then pick one or two achievable goals, such as improving employee benefits, reducing waste, or sourcing locally. Progress happens through small, transparent steps, not perfection. I’m an entrepreneur myself, and when I first took an assessment myself, I panicked — but that’s the point. It’s about identifying opportunities for improvement, not judgment. Once you see where you can make a change, momentum builds. It’s a marathon, not a sprint. Q: Where do you see the biggest growth opportunities for Michigan businesses in the next five years? A: Growth lies at the intersection of sustainability, equity, and innovation. The clean energy transition alone represents a multi-trillion-dollar opportunity. There’s also growing potential in circular manufacturing and workforce development and worker-owned cooperatives. We need to make sure those opportunities are equitable. Detroit has a majority Black population, and Michigan has several key regions with strong, diverse, but underserved communities. As major investments flow into green energy and infrastructure, it’s vital that local entrepreneurs and workers share in that growth. This is still a foundational phase. Some of the biggest

Read More »

How Sesame Solar is Aiming to Build a Mobile Clean Energy Future

Sesame Solar, based in Jackson, Michigan, is pioneering a new model for clean, mobile power. The company’s self-generating “nanogrids” — compact, solar- and hydrogen-powered units that deploy in minutes — are designed to deliver renewable electricity anywhere it’s needed. From emergency response and telecom operations to defense and community resilience, the technology provides an alternative to the diesel generators that have long powered temporary and remote sites. SBN Detroit interviewed co-founder Lauren Flanagan about redefining energy resilience, the challenges of scaling clean power, and why Michigan is the right place to lead this transformation. Q: Tell me about Sesame Solar — what inspired it, and how did it begin? A: After Hurricane Katrina, it hit me that extreme weather was becoming more frequent and more severe. And it was clear that government alone couldn’t handle the response. Every time disaster struck, I saw diesel generators being deployed to restore power, even though they caused massive environmental damage and logistical problems. That was the “aha” moment. I wanted to create a clean, mobile, self-generating power solution that could replace diesel. Q: How did that vision turn into the nanogrid model you use today? A: We realized that to change behavior, we had to make the better solution easier — something that could be deployed quickly, run cleanly, and adapt to different uses. We created a model that is modular and scalable, like Lego blocks. The nanogrids can power emergency offices, communications systems, field kitchens, drone refueling stations and more. The first units were deployed in the Caribbean after Hurricane Maria (2017), and they’re still operating today. From there, we’ve expanded across the U.S. — our systems are used by cities from Ann Arbor to Santa Barbara, and by telecom companies like Comcast, Cox, and Charter. Q: What kinds of situations demonstrate the greatest need for deployable clean power? A: Disaster recovery is one, of course, but our nanogrids are also being used anywhere grid power is unreliable or unavailable. The Air Force and the Army Corps of Engineers use them for unmanned operations, including surveillance and communications. We’ve also developed hydrogen-powered drone refueling stations with partners like Heven Aerotech. We’re seeing use cases across emergency management, defense, telecommunications, and community resilience — really, any situation where people need dependable, sustainable power quickly. Q: What challenges come with making energy both mobile and self-generating? A: It’s hard. To make something that sets up in 15 minutes and runs off solar and hydrogen, you need deep integration between hardware, software, and automation. We hold multiple patents, and our engineering team has solved challenges around rapid deployment, autonomous energy management, and safety. Every component — from insulation and vapor barriers to passive energy systems — contributes to efficiency. We have a unit deployed with the Army Corps of Engineers that’s been running unmanned for nearly a year with zero downtime. Imagine if a diesel-powered generator was running for that long. And maintenance of the unit consists of blowing sand off the panels twice a year because it’s located in the desert. That’s the level of reliability we’re aiming for. Q: How do you measure the environmental benefits compared to diesel generators? A: We quantify it in CO₂ savings. Our software platform tracks every kilowatt generated and consumed, calculating gallons of diesel avoided and total emissions saved in real time. It’s data our customers can use to validate their sustainability goals. Beyond emissions, diesel generators are noisy, polluting, and often dependent on supply chains that fail during crises. A self-sustaining nanogrid avoids all of that. Q: You moved the company from California to Michigan. Why build here? A: Honestly, I wouldn’t have opened this business in California. Michigan offers lower operating costs, a strong manufacturing base, and deep expertise in mobility and electrification — all areas that align with our long-term vision to make nanogrids more automated. The state has a world-class supply chain. We buy from companies like Alro Steel, we hire engineers locally, and we also source as locally as possible. I like to say we take a farm-to-table approach to manufacturing: how much can we build right here in Michigan? Q: What opportunities does this create for Michigan’s workforce and suppliers? A: We’re growing quickly — we have 23 employees and are hiring more technicians now. The roles require multidisciplinary skills like fabrication, welding, mechanical, and electrical. Increasingly, there are opportunities for advanced computer-assisted and AI-driven roles too. Michigan’s existing fabrication and automotive supply chain is a huge advantage. As that sector transitions toward electrification, it’s opening new opportunities for clean-tech manufacturing to scale. Q: What does the next decade look like as extreme weather becomes more frequent and the energy transition accelerates? A: It’s predicted that we’ll see a significant number of billion-dollar weather events in the next five or six years. Even as we make progress in slowing climate change, we’ll still need to adapt. That’s where mobile, renewably powered systems can come in. They bridge the gap between infrastructure and immediacy — bringing clean energy wherever it’s needed. I’m an optimist. I believe the technology exists to stabilize the climate, but it won’t get easier before it gets better. At Sesame Solar, our mission has always been about people, planet, and profit. It sounds a bit fluffy, but we are working to help communities, companies, and governments prepare for the future — not just by responding to disasters, but by rethinking how we power the world in the first place.   Be sure to subscribe to our newsletter for regular updates on sustainable business practices in and around Detroit.

Read More »

Rebuilding Electric Motor Manufacturing in Michigan

Farmington Hills-based Modal Motors designs and manufactures next-generation electric motors engineered for high torque density, simplified assembly, and scalability in the United States. The company’s transverse-flux architecture reduces reliance on rare-earth materials while improving efficiency and performance across mobility applications, including EVs, drones, and industrial equipment. By rethinking both motor design and manufacturability, Modal Motors aims to strengthen domestic supply chains and support the growing electrification industry. The company recently raise $2 million in a seed funding round that it will use to accelerate its transition from R&D and prototyping to full-scale manufacturing in Michigan. SBN Detroit interviewed company founder and CEO Michael Steenburg about reshoring manufacturing, supporting Michigan’s EV leadership, and the future of electric propulsion. Q: Give us the brief origin story. What motivated the creation of Modal Motors? A: Over the last 25 years, American manufacturing has moved steadily overseas. As electrification has accelerated, we’ve seen a slow-moving shift where innovation happens here, but production doesn’t. Early in my career, I focused on improving fuel efficiency in vehicles. That eventually led to developing my own motor IP. When I looked at the manufacturing reality, it was clear: If we wanted the U.S. to truly compete in electrified mobility, we needed to rethink how motors are built. Instead of designing motors that require extremely labor-intensive processes and then shipping production to Asia to reduce costs, we asked: What if we design motors that are simpler and more affordable to build here in the U.S. from the start? Modal Motors is about empowering a domestic ecosystem — not just for cars, but also for tools, industrial equipment, and new sectors like drones. We want to help restore middle-skill manufacturing jobs and global competitiveness. Q: As the EV transition accelerates, what strengths can Michigan leverage in next-generation motor technology? A: Michigan is uniquely positioned to lead in electric motors. We already have the materials: Magnets, copper, aluminum, and magnetic steel — all core materials for electric machines. We have the fabrication capabilities and the workforce tuned to advanced manufacturing. The state has done this before. During WWII, Michigan transformed its industrial capacity seemingly overnight. When you combine supply chain + skilled labor + materials, Michigan can support EVs from raw resource to finished motor. Q: Your motors use a transverse-flux architecture. What limitations of conventional motors drove that change? A: Traditional motors are built from dozens of wound poles — for example, 36 windings, each requiring extremely precise tolerances. In EV motors, the most important factor is the air gap between rotor and stator. Every tolerance stack-up tightens that gap, making efficiency dependent on expensive precision manufacturing. That’s where the U.S. loses cost competitiveness. Either you buy extremely complex machinery or you rely heavily on manual labor, and both increase cost. We simplified the architecture. Our drone motors have about 10 components. Fewer parts means faster assembly, fewer labor hours, and lower costs — while allowing us to pack in more conductive material like copper, which directly boosts efficiency. We also design for improved heat removal, which is critical because permanent magnets degrade if they overheat. It’s not magic. It’s applying well-understood engineering principles to reshape manufacturability. Q How does torque density influence vehicle performance and design flexibility? A: Higher torque density means more power in a smaller package. That gives automakers more freedom — lighter powertrains, more cabin space, and better range due to reduced mass. It also lets us rethink where motors go. You can decentralize propulsion — wheel motors are a great example — and that opens new possibilities for efficiency and architecture. Q: What role do motor efficiencies play in lifecycle sustainability? A: Once an EV is in use, there are no tailpipe emissions. Lifecycle emissions are determined by everything leading up to that point — and the more efficient the motor, the faster you reach carbon parity with internal combustion. The energy pathway matters too. Electricity can be generated cleanly and used directly in propulsion with relatively little loss. That’s fundamentally different from extracting, refining, transporting, and burning fuel. And increasingly, people are powering their vehicles at home with solar — something impossible with fossil fuels. Q: What makes a motor truly “greener” end-to-end? A: Cradle to grave matters. How materials are mined. How they’re processed. How much waste is generated. We design for net-shape molding, which means essentially zero scrap — compared to stamped laminations where 40–60% of material can become waste. Even if metal is recycled, that still requires energy. Eliminating waste helps both sustainability and cost, which reinforces competitiveness for U.S. manufacturers. Q: Where do you see your earliest applications? A: Right now, off-highway vehicles, low-speed on-road vehicles, and especially drones. We’ve seen enormous demand in aerospace and defense because propulsion reliability and supply-chain security are strategic priorities. Drones were the first to fully embrace emerging motor architectures. Q: How open are OEMs to integrating new propulsion architectures? A: It varies. Drone manufacturers are agile — they don’t have decades of legacy powertrain design to work around. Automakers are more cautious, but they’re increasingly interested in wheel-motor architectures because removing the centralized drivetrain frees up vehicle space and simplifies mechanical systems. There’s also a generational shift. Younger buyers are embracing smaller, more efficient vehicles. That shift aligns well with distributed propulsion. Q: What breakthroughs do you expect next in electric motor development? A: I see two major drivers. First, new materials. AI-accelerated materials science will unlock stronger, cooler-running, more recyclable magnetic and structural alloys — including non-rare-earth alternatives. Second is new manufacturing automation. Robotics — including humanoid robots — will soon handle complex manual steps at high speed and precision, enabling U.S. factories to operate 24/7. When you combine those, motor technology and production are both heading toward dramatic gains in efficiency and sustainability.   Be sure to subscribe to our newsletter for regular updates on sustainable business practices in and around Detroit.

Read More »